Spaces:
Runtime error
Runtime error
import os | |
import boto3 | |
import openai | |
import whisper | |
import logging | |
import base64 | |
import gradio as gr | |
from io import BytesIO | |
from langchain import OpenAI | |
from langchain.chains import RetrievalQA | |
from langchain.vectorstores import Chroma | |
from langchain.document_loaders import DirectoryLoader | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from assets.char_poses_base64 import idle_html_base_64, thinking_html_base_64, talking_html_base64 | |
logging.basicConfig(level="INFO", | |
filename='conversations.log', | |
filemode='a', | |
format='%(asctime)s %(message)s', | |
datefmt='%H:%M:%S') | |
logger = logging.getLogger('voice_agent') | |
global FUNC_CALL | |
FUNC_CALL = 0 | |
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY') | |
AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') | |
AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY') | |
AWS_REGION_NAME = 'ap-south-1' | |
GENERAL_RSPONSE_TRIGGERS = ["I don't understand the question.", "I don't know", "Hello, my name is", "mentioned in the context provided"] | |
MESSAGES = [{"role": "system", "content": "You are a helpful assistant.."}] | |
CHAR_IDLE = f'<img src="{idle_html_base_64}"></img>' | |
CHAR_TALKING = f'<img src="{talking_html_base64}"></img>' | |
CHAR_THINKING = f'<img src="{thinking_html_base_64}"></img>' | |
AUDIO_HTML = '' | |
# Uncomment If this is your first Run: | |
import nltk | |
nltk.download('averaged_perceptron_tagger') | |
def initialize_knowledge_base(): | |
loader = DirectoryLoader('profiles', glob='**/*.txt') | |
docs = loader.load() | |
char_text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) | |
doc_texts = char_text_splitter.split_documents(docs) | |
openAI_embeddings = OpenAIEmbeddings() | |
vStore = Chroma.from_documents(doc_texts, openAI_embeddings) | |
conv_model = RetrievalQA.from_chain_type( | |
llm=OpenAI(), | |
chain_type="stuff", | |
retriever=vStore.as_retriever( | |
search_kwargs={"k": 1} | |
) | |
) | |
voice_model = whisper.load_model("tiny") | |
return conv_model, voice_model | |
def text_to_speech_gen(answer): | |
polly = boto3.client('polly', | |
aws_access_key_id=AWS_ACCESS_KEY_ID, | |
aws_secret_access_key=AWS_SECRET_ACCESS_KEY, | |
region_name=AWS_REGION_NAME) | |
response = polly.synthesize_speech( | |
Text=answer, | |
VoiceId='Matthew', | |
OutputFormat='mp3', | |
Engine = "neural") | |
audio_stream = response['AudioStream'].read() | |
audio_html = audio_to_html(audio_stream) | |
return audio_html | |
def audio_to_html(audio_bytes): | |
audio_io = BytesIO(audio_bytes) | |
audio_io.seek(0) | |
audio_base64 = base64.b64encode(audio_io.read()).decode("utf-8") | |
audio_html = f'<audio src="data:audio/mpeg;base64,{audio_base64}" controls autoplay></audio>' | |
return audio_html | |
def update_img(): | |
global FUNC_CALL | |
FUNC_CALL += 1 | |
if FUNC_CALL % 2== 0: | |
CHARACTER_STATE = CHAR_TALKING | |
else: | |
CHARACTER_STATE = CHAR_THINKING | |
return CHARACTER_STATE | |
def user(user_message, history): | |
return "", history + [[user_message, None]] | |
conv_model, voice_model = initialize_knowledge_base() | |
def get_response(history, audio_input): | |
query_type = 'text' | |
question =history[-1][0] | |
if not question: | |
if audio_input: | |
query_type = 'audio' | |
os.rename(audio_input, audio_input + '.wav') | |
audio_file = open(audio_input + '.wav', "rb") | |
transcript = openai.Audio.transcribe("whisper-1", audio_file) | |
question = transcript['text'] | |
else: | |
return None, None | |
logger.info("\nquery_type: %s", query_type) | |
logger.info("query_text: %s", question) | |
print('\nquery_type:', query_type) | |
print('\nquery_text:', question) | |
if question.lower().strip() == 'hi': | |
question = 'hello' | |
answer = conv_model.run(question) | |
logger.info("\ndocument_response: %s", answer) | |
print('\ndocument_response:', answer) | |
for trigger in GENERAL_RSPONSE_TRIGGERS: | |
if trigger in answer: | |
MESSAGES.append({"role": "user", "content": question}) | |
chat = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=MESSAGES, | |
temperature=0.7, | |
n=128, | |
stop="\n" | |
) | |
answer = chat.choices[0].message.content | |
MESSAGES.append({"role": "assistant", "content": answer}) | |
logger.info("general_response: %s", answer) | |
print('\ngeneral_response:', answer) | |
AUDIO_HTML = text_to_speech_gen(answer) | |
history[-1][1] = answer | |
return history, AUDIO_HTML | |
with gr.Blocks(title="Your Assistance Pal!") as demo: | |
with gr.Row(): | |
output_html = gr.HTML(label="Felix's Voice", value=AUDIO_HTML) | |
output_html.visible = False | |
assistant_character = gr.HTML(label=None, value=CHAR_IDLE, show_label=False) | |
with gr.Column(scale=0.1): | |
chatbot = gr.Chatbot(label='Send a text or a voice input').style(height=285) | |
with gr.Row(): | |
msg = gr.Textbox(placeholder='Write a chat & press Enter.', show_label=False).style(container=False) | |
with gr.Column(scale=0.5): | |
audio_input = gr.Audio(source="microphone", type='filepath', show_label=False).style(container=False) | |
button = gr.Button(value="Send") | |
msg.submit(user, [msg, chatbot], [msg, chatbot] | |
).then(update_img, outputs=[assistant_character] | |
).then(get_response, [chatbot, audio_input], [chatbot, output_html] | |
).then(update_img, outputs=[assistant_character]) | |
button.click(user, [msg, chatbot], [msg, chatbot] | |
).then(update_img, outputs=[assistant_character] | |
).then(get_response, [chatbot, audio_input], [chatbot, output_html] | |
).then(update_img, outputs=[assistant_character]) | |
demo.launch(debug=False, favicon_path='assets/favicon.png', show_api=False, share=False) |