File size: 11,811 Bytes
939f6ae
 
 
e62a0e5
 
 
 
 
 
 
939f6ae
 
 
 
7f6f34c
e62a0e5
 
 
 
 
 
 
 
 
 
aa1bdb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ba1088f
aa1bdb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62a0e5
 
 
 
 
 
 
4dc6cd8
 
 
e62a0e5
 
4dc6cd8
 
 
 
e62a0e5
 
 
aa1bdb0
e62a0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
aa1bdb0
e62a0e5
 
 
4dc6cd8
 
 
 
e62a0e5
 
 
4dc6cd8
e62a0e5
 
 
 
 
 
 
4dc6cd8
e62a0e5
 
 
 
 
 
4dc6cd8
e62a0e5
 
 
 
 
 
4dc6cd8
e62a0e5
 
 
 
 
 
4dc6cd8
e62a0e5
 
 
 
939f6ae
e62a0e5
 
4dc6cd8
 
 
 
 
 
 
 
 
939f6ae
4dc6cd8
 
 
 
 
 
 
 
 
 
 
939f6ae
4dc6cd8
 
 
 
 
 
 
 
 
 
 
 
 
939f6ae
4dc6cd8
 
 
 
 
 
 
 
 
 
 
 
 
939f6ae
4dc6cd8
 
 
 
 
 
 
 
 
e62a0e5
 
 
 
 
ba1088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62a0e5
ba1088f
 
e62a0e5
ba1088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62a0e5
ba1088f
 
 
 
 
 
 
 
 
 
e62a0e5
ba1088f
e62a0e5
ba1088f
 
e62a0e5
ba1088f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e62a0e5
 
 
ba1088f
e62a0e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
def replace_wildcards(
    templates, wildcards, replacements, has_numeric_columns, has_categoric_columns
):
    if len(wildcards) != len(replacements):
        raise ValueError(
            "The number of wildcards must match the number of replacements."
        )

    new_templates = []
    for tmp in templates:
        if "type" in tmp and tmp["type"] == "numeric" and not has_numeric_columns:
            continue
        if "type" in tmp and tmp["type"] == "categoric" and not has_categoric_columns:
            continue
        tmp_text = tmp["source"].strip()
        for wildcard, replacement in zip(wildcards, replacements):
            tmp_text = tmp_text.replace(wildcard, replacement)
        new_templates.append({"cell_type": tmp["cell_type"], "source": tmp_text})

    return new_templates


embeggins_cells = [
    {
        "cell_type": "markdown",
        "source": """
---
# **Embeddings Notebook for {dataset_name} dataset**
---
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 1. Setup necessary libraries and load the dataset",
    },
    {
        "cell_type": "code",
        "source": """
# Install and import necessary libraries.
!pip install pandas sentence-transformers faiss-cpu
""",
    },
    {
        "cell_type": "code",
        "source": """
import pandas as pd
from sentence_transformers import SentenceTransformer
import faiss
""",
    },
    {
        "cell_type": "code",
        "source": """
# Load the dataset as a DataFrame
{first_code}
""",
    },
    {
        "cell_type": "code",
        "source": """
# Specify the column name that contains the text data to generate embeddings
column_to_generate_embeddings = '{longest_col}'
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 2. Loading embedding model and creating FAISS index",
    },
    {
        "cell_type": "code",
        "source": """
# Remove duplicate entries based on the specified column
df = df.drop_duplicates(subset=column_to_generate_embeddings)
""",
    },
    {
        "cell_type": "code",
        "source": """
# Convert the column data to a list of text entries
text_list = df[column_to_generate_embeddings].tolist()
""",
    },
    {
        "cell_type": "code",
        "source": """
# Specify the embedding model you want to use
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
""",
    },
    {
        "cell_type": "code",
        "source": """
vectors = model.encode(text_list)
vector_dimension = vectors.shape[1]

# Initialize the FAISS index with the appropriate dimension (384 for this model)
index = faiss.IndexFlatL2(vector_dimension)

# Encode the text list into embeddings and add them to the FAISS index
index.add(vectors)
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 3. Perform a text search",
    },
    {
        "cell_type": "code",
        "source": """
# Specify the text you want to search for in the list
text_to_search = text_list[0]
print(f"Text to search: {text_to_search}")
""",
    },
    {
        "cell_type": "code",
        "source": """
# Generate the embedding for the search query
query_embedding = model.encode([text_to_search])
""",
    },
    {
        "cell_type": "code",
        "source": """
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
D, I = index.search(query_embedding, k=10)

# Print the similar documents found
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
""",
    },
]

eda_cells = [
    {
        "cell_type": "markdown",
        "source": """
---
# **Exploratory Data Analysis (EDA) Notebook for {dataset_name} dataset**
---
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 1. Setup necessary libraries and load the dataset",
    },
    {
        "cell_type": "code",
        "source": """
# Install and import necessary libraries.
!pip install pandas matplotlib seaborn
""",
    },
    {
        "cell_type": "code",
        "source": """
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
""",
    },
    {
        "cell_type": "code",
        "source": """
# Load the dataset as a DataFrame
{first_code}
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 2. Understanding the Dataset",
    },
    {
        "cell_type": "code",
        "source": """
# First rows of the dataset and info
print(df.head())
print(df.info())
""",
    },
    {
        "cell_type": "code",
        "source": """
# Check for missing values
print(df.isnull().sum())
""",
    },
    {
        "cell_type": "code",
        "source": """
# Identify data types of each column
print(df.dtypes)
""",
    },
    {
        "cell_type": "code",
        "source": """
# Detect duplicated rows
print(df.duplicated().sum())
""",
    },
    {
        "cell_type": "code",
        "source": """
# Generate descriptive statistics
print(df.describe())
""",
    },
    {
        "type": "categoric",
        "cell_type": "code",
        "source": """
# Unique values in categorical columns
df.select_dtypes(include=['object']).nunique()
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 3. Data Visualization",
    },
    {
        "type": "numeric",
        "cell_type": "code",
        "source": """
# Correlation matrix for numerical columns
corr_matrix = df.corr(numeric_only=True)
plt.figure(figsize=(10, 8))
sns.heatmap(corr_matrix, annot=True, fmt='.2f', cmap='coolwarm', square=True)
plt.title('Correlation Matrix')
plt.show()
""",
    },
    {
        "type": "numeric",
        "cell_type": "code",
        "source": """
# Distribution plots for numerical columns
for column in df.select_dtypes(include=['int64', 'float64']).columns:
    plt.figure(figsize=(8, 4))
    sns.histplot(df[column], kde=True)
    plt.title(f'Distribution of {column}')
    plt.xlabel(column)
    plt.ylabel('Frequency')
    plt.show()
""",
    },
    {
        "type": "categoric",
        "cell_type": "code",
        "source": """
# Count plots for categorical columns
for column in df.select_dtypes(include=['object']).columns:
    plt.figure(figsize=(8, 4))
    sns.countplot(x=column, data=df)
    plt.title(f'Count Plot of {column}')
    plt.xlabel(column)
    plt.ylabel('Count')
    plt.show()
""",
    },
    {
        "type": "numeric",
        "cell_type": "code",
        "source": """
# Box plots for detecting outliers in numerical columns
for column in df.select_dtypes(include=['int64', 'float64']).columns:
    plt.figure(figsize=(8, 4))
    sns.boxplot(df[column])
    plt.title(f'Box Plot of {column}')
    plt.xlabel(column)
    plt.show()
""",
    },
]


rag_cells = [
    {
        "cell_type": "markdown",
        "source": """
---
# **Retrieval-Augmented Generation Notebook for {dataset_name} dataset**
---
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 1. Setup necessary libraries and load the dataset",
    },
    {
        "cell_type": "code",
        "source": """
# Install and import necessary libraries.
!pip install pandas sentence-transformers faiss-cpu transformers torch
""",
    },
    {
        "cell_type": "code",
        "source": """
import pandas as pd
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import faiss
import torch
""",
    },
    {
        "cell_type": "code",
        "source": """
# Load the dataset as a DataFrame
{first_code}
""",
    },
    {
        "cell_type": "code",
        "source": """
# Specify the column name that contains the text data to generate embeddings
column_to_generate_embeddings = '{longest_col}'
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 2. Loading embedding model and creating FAISS index",
    },
    {
        "cell_type": "code",
        "source": """
# Remove duplicate entries based on the specified column
df = df.drop_duplicates(subset=column_to_generate_embeddings)
""",
    },
    {
        "cell_type": "code",
        "source": """
# Convert the column data to a list of text entries
text_list = df[column_to_generate_embeddings].tolist()
""",
    },
    {
        "cell_type": "code",
        "source": """
# Specify the embedding model you want to use
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
""",
    },
    {
        "cell_type": "code",
        "source": """
vectors = model.encode(text_list)
vector_dimension = vectors.shape[1]

# Initialize the FAISS index with the appropriate dimension (384 for this model)
index = faiss.IndexFlatL2(vector_dimension)

# Encode the text list into embeddings and add them to the FAISS index
index.add(vectors)
""",
    },
    {
        "cell_type": "markdown",
        "source": "## 3. Perform a text search",
    },
    {
        "cell_type": "code",
        "source": """
# Specify the text you want to search for in the list
text_to_search = text_list[0]
print(f"Text to search: {text_to_search}")
""",
    },
    {
        "cell_type": "code",
        "source": """
# Generate the embedding for the search query
query_embedding = model.encode([text_to_search])
""",
    },
    {
        "cell_type": "code",
        "source": """
# Perform the search to find the 'k' nearest neighbors (adjust 'k' as needed)
D, I = index.search(query_embedding, k=10)

# Print the similar documents found
print(f"Similar documents: {[text_list[i] for i in I[0]]}")
""",
    },
    {"cell_type": "markdown", "source": "## 4. Load pipeline and perform inference"},
    {
        "cell_type": "code",
        "source": """
# Adjust model name as needed
checkpoint = 'HuggingFaceTB/SmolLM-1.7B-Instruct'

device = "cuda" if torch.cuda.is_available() else "cpu" # for GPU usage or "cpu" for CPU usage

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)

generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1)
""",
    },
    {
        "cell_type": "code",
        "source": """
# Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query
query = "How to prepare a cake?"
selected_elements = [text_list[i] for i in I[0].tolist()]
context = ','.join(selected_elements)
prompt = f"system: Answer user's question based on '{context}'. user: {query}"
""",
    },
    {
        "cell_type": "code",
        "source": """
# Send the prompt to the pipeline and show the answer
output = generator(prompt)
print("Generated Summary:")
print(output[0]['generated_text'])
""",
    },
]


def generate_rag_system_prompt():
    """

    1. Install necessary libraries.
    2. Import libraries.
    3. Load the dataset as a DataFrame using the provided code.
    4. Select the column for generating embeddings.
    5. Remove duplicate data.
    6. Convert the selected column to a list.
    7. Load the sentence-transformers model.
    8. Create a FAISS index.
    9. Encode a query sample.
    10. Search for similar documents using the FAISS index.
    11. Load the 'HuggingFaceH4/zephyr-7b-beta' model from the transformers library and create a pipeline.
    12. Create a prompt with two parts: 'system' for instructions based on a 'context' from the retrieved documents, and 'user' for the query.
    13. Send the prompt to the pipeline and display the answer.

    Ensure the notebook is well-organized with explanations for each step.
    The output should be Markdown content with Python code snippets enclosed in "```python" and "```".

    The user will provide the dataset information in the following format:

    ## Columns and Data Types

    ## Sample Data

    ## Loading Data code

    Use the provided code to load the dataset; do not use any other method.
    """