Attention-refocusing / gligen /ldm /modules /diffusionmodules /canny_grounding_downsampler.py
Quα»³nh PhΓΉng
update
589b7f1
raw
history blame
977 Bytes
import torch
import torch.nn as nn
from ldm.modules.attention import BasicTransformerBlock
from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
import torch.nn.functional as F
class GroundingDownsampler(nn.Module):
def __init__(self, resize_input=256, out_dim=8):
super().__init__()
self.resize_input = resize_input
self.out_dim = out_dim
self.layers = nn.Sequential(
nn.Conv2d(1,4,4,2,1),
nn.SiLU(),
nn.Conv2d(4,self.out_dim,4,2,1)
)
def forward(self, grounding_extra_input):
# this is actually gary scale, but converted to rgb in dataset, information redudant
grounding_extra_input = grounding_extra_input[:,0].unsqueeze(1)
out = torch.nn.functional.interpolate(grounding_extra_input, (self.resize_input,self.resize_input), mode='bicubic')
out = self.layers(out)
assert out.shape[1] == self.out_dim
return out