Quα»³nh PhΓΉng
update
589b7f1
raw
history blame
2.29 kB
import torch
import torch.nn as nn
from ldm.modules.attention import BasicTransformerBlock
from ldm.modules.diffusionmodules.util import checkpoint, FourierEmbedder
import torch.nn.functional as F
class PositionNet(nn.Module):
def __init__(self, max_persons_per_image, out_dim, fourier_freqs=8):
super().__init__()
self.max_persons_per_image = max_persons_per_image
self.out_dim = out_dim
self.person_embeddings = torch.nn.Parameter(torch.zeros([max_persons_per_image,out_dim]))
self.keypoint_embeddings = torch.nn.Parameter(torch.zeros([17,out_dim]))
self.fourier_embedder = FourierEmbedder(num_freqs=fourier_freqs)
self.position_dim = fourier_freqs*2*2 # 2 is sin&cos, 2 is xy
self.linears = nn.Sequential(
nn.Linear( self.out_dim + self.position_dim, 512),
nn.SiLU(),
nn.Linear( 512, 512),
nn.SiLU(),
nn.Linear(512, out_dim),
)
self.null_person_feature = torch.nn.Parameter(torch.zeros([self.out_dim]))
self.null_xy_feature = torch.nn.Parameter(torch.zeros([self.position_dim]))
def forward(self, points, masks):
masks = masks.unsqueeze(-1)
N = points.shape[0]
person_embeddings = self.person_embeddings.unsqueeze(1).repeat(1,17,1).reshape(self.max_persons_per_image*17, self.out_dim)
keypoint_embeddings = torch.cat([self.keypoint_embeddings]*self.max_persons_per_image, dim=0)
person_embeddings = person_embeddings + keypoint_embeddings # (num_person*17) * C
person_embeddings = person_embeddings.unsqueeze(0).repeat(N,1,1)
# embedding position (it may includes padding as placeholder)
xy_embedding = self.fourier_embedder(points) # B*N*2 --> B*N*C
# learnable null embedding
person_null = self.null_person_feature.view(1,1,-1)
xy_null = self.null_xy_feature.view(1,1,-1)
# replace padding with learnable null embedding
person_embeddings = person_embeddings*masks + (1-masks)*person_null
xy_embedding = xy_embedding*masks + (1-masks)*xy_null
objs = self.linears( torch.cat([person_embeddings, xy_embedding], dim=-1) )
return objs