Quα»³nh PhΓΉng
update
589b7f1
raw
history blame
8.7 kB
import torch
import torch.nn as nn
from functools import partial
import clip
from einops import rearrange, repeat
from transformers import CLIPTokenizer, CLIPTextModel
import kornia
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
class AbstractEncoder(nn.Module):
def __init__(self):
super().__init__()
def encode(self, *args, **kwargs):
raise NotImplementedError
class ClassEmbedder(nn.Module):
def __init__(self, embed_dim, n_classes=1000, key='class'):
super().__init__()
self.key = key
self.embedding = nn.Embedding(n_classes, embed_dim)
def forward(self, batch, key=None):
if key is None:
key = self.key
# this is for use in crossattn
c = batch[key][:, None]
c = self.embedding(c)
return c
class TransformerEmbedder(AbstractEncoder):
"""Some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
super().__init__()
self.device = device
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer))
def forward(self, tokens):
tokens = tokens.to(self.device) # meh
z = self.transformer(tokens, return_embeddings=True)
return z
def encode(self, x):
return self(x)
class BERTTokenizer(AbstractEncoder):
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
def __init__(self, device="cuda", vq_interface=True, max_length=77):
super().__init__()
from transformers import BertTokenizerFast # TODO: add to reuquirements
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
self.device = device
self.vq_interface = vq_interface
self.max_length = max_length
def forward(self, text):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt",
return_offsets_mapping=True)
tokens = batch_encoding["input_ids"].to(self.device)
offset_mapping = batch_encoding["offset_mapping"]
return tokens, offset_mapping
@torch.no_grad()
def encode(self, text):
tokens = self(text)
if not self.vq_interface:
return tokens
return None, None, [None, None, tokens]
def decode(self, text):
return text
class BERTEmbedder(AbstractEncoder):
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
super().__init__()
self.use_tknz_fn = use_tokenizer
if self.use_tknz_fn:
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
self.device = device
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
attn_layers=Encoder(dim=n_embed, depth=n_layer),
emb_dropout=embedding_dropout)
def forward(self, text, return_offset_mapping=False):
if self.use_tknz_fn:
tokens, offset_mapping = self.tknz_fn(text)#.to(self.device)
else:
assert False
tokens = text
z = self.transformer(tokens, return_embeddings=True)
if return_offset_mapping:
return z, offset_mapping
else:
return z
def encode(self, text, return_offset_mapping=False):
# output of length 77
return self(text, return_offset_mapping)
class SpatialRescaler(nn.Module):
def __init__(self,
n_stages=1,
method='bilinear',
multiplier=0.5,
in_channels=3,
out_channels=None,
bias=False):
super().__init__()
self.n_stages = n_stages
assert self.n_stages >= 0
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
self.multiplier = multiplier
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
self.remap_output = out_channels is not None
if self.remap_output:
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
def forward(self,x):
for stage in range(self.n_stages):
x = self.interpolator(x, scale_factor=self.multiplier)
if self.remap_output:
x = self.channel_mapper(x)
return x
def encode(self, x):
return self(x)
class FrozenCLIPEmbedder(AbstractEncoder):
"""Uses the CLIP transformer encoder for text (from Hugging Face)"""
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77):
super().__init__()
self.tokenizer = CLIPTokenizer.from_pretrained(version)
self.transformer = CLIPTextModel.from_pretrained(version)
self.device = device
self.max_length = max_length
self.freeze()
def freeze(self):
self.transformer = self.transformer.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text, return_pooler_output=False):
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
tokens = batch_encoding["input_ids"].to(self.device)
outputs = self.transformer(input_ids=tokens)
z = outputs.last_hidden_state
if not return_pooler_output:
return z
else:
return z, outputs.pooler_output
def encode(self, text, return_pooler_output=False):
return self(text, return_pooler_output)
class FrozenCLIPTextEmbedder(nn.Module):
"""
Uses the CLIP transformer encoder for text.
"""
def __init__(self, version='ViT-L/14', device="cuda", max_length=77, n_repeat=1, normalize=True):
super().__init__()
self.model, _ = clip.load(version, jit=False, device="cpu")
self.device = device
self.max_length = max_length
self.n_repeat = n_repeat
self.normalize = normalize
def freeze(self):
self.model = self.model.eval()
for param in self.parameters():
param.requires_grad = False
def forward(self, text):
tokens = clip.tokenize(text).to(self.device)
z = self.model.encode_text(tokens)
if self.normalize:
z = z / torch.linalg.norm(z, dim=1, keepdim=True)
return z
def encode(self, text):
z = self(text)
if z.ndim==2:
z = z[:, None, :]
z = repeat(z, 'b 1 d -> b k d', k=self.n_repeat)
return z
class FrozenClipImageEmbedder(nn.Module):
"""
Uses the CLIP image encoder.
"""
def __init__(
self,
model,
jit=False,
device='cuda' if torch.cuda.is_available() else 'cpu',
antialias=False,
):
super().__init__()
self.model, _ = clip.load(name=model, device=device, jit=jit)
self.antialias = antialias
self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False)
self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False)
def preprocess(self, x):
# normalize to [0,1]
x = kornia.geometry.resize(x, (224, 224),
interpolation='bicubic',align_corners=True,
antialias=self.antialias)
x = (x + 1.) / 2.
# renormalize according to clip
x = kornia.enhance.normalize(x, self.mean, self.std)
return x
def forward(self, x):
# x is assumed to be in range [-1,1]
return self.model.encode_image(self.preprocess(x))
if __name__ == "__main__":
from ldm.util import count_params
model = FrozenCLIPEmbedder()
count_params(model, verbose=True)