File size: 13,374 Bytes
2d4b120
 
 
 
888432c
c84ed95
80f2297
 
 
09881d4
556b288
 
2d4b120
f0d92dc
2d4b120
f0d92dc
 
2d4b120
 
 
 
 
 
 
 
 
 
 
 
 
 
679fbc2
2d4b120
 
 
23ca923
341b6a4
2d4b120
 
fe77dfe
2d4b120
 
5170076
 
23ca923
bb28608
 
 
 
aa1e2a0
888432c
2d4b120
23ca923
bceb306
79668b2
 
bb28608
341b6a4
2d4b120
 
75fe862
 
 
bb28608
 
23ca923
bb28608
aa1e2a0
75fe862
888432c
 
 
bb28608
aa1e2a0
75fe862
888432c
 
 
 
aa1e2a0
2d4b120
 
fb1fa43
80f2297
2d4b120
f0d92dc
80f2297
23ca923
f0d92dc
 
 
 
 
80f2297
2d4b120
23ca923
80f2297
 
f0d92dc
79668b2
 
80f2297
23ca923
 
 
f0d92dc
79668b2
 
 
80f2297
 
 
79668b2
80f2297
 
 
 
 
 
79668b2
80f2297
 
 
 
 
 
79668b2
2d4b120
79668b2
2d4b120
 
 
38045c5
 
 
 
 
 
 
 
 
 
 
6be0e9c
38045c5
23ca923
 
38045c5
338a59f
23ca923
 
79668b2
 
 
 
38045c5
79668b2
 
 
38045c5
 
338a59f
79668b2
dc9afe5
79668b2
 
 
5170076
79668b2
 
23ca923
2d4b120
 
 
79668b2
338a59f
2d4b120
04ce154
79668b2
 
6be0e9c
 
 
2d4b120
5170076
 
 
 
 
2d4b120
 
82c959c
8e681fa
 
 
6be0e9c
8e681fa
 
5fce9cb
5170076
 
 
 
38045c5
5170076
 
 
 
8e681fa
 
 
6be0e9c
8e681fa
 
 
5170076
 
 
38045c5
5170076
 
38045c5
6be0e9c
 
 
38045c5
5170076
 
 
 
 
 
82c959c
bb28608
82c959c
 
 
6be0e9c
338a59f
82c959c
2d4b120
6be0e9c
 
 
 
82c959c
 
 
09881d4
82c959c
8703a23
82c959c
2d4b120
888432c
5170076
888432c
 
5170076
 
6be0e9c
5170076
 
 
82c959c
 
5170076
 
82c959c
c84ed95
82c959c
5170076
82c959c
3bebb47
6be0e9c
 
5170076
 
 
 
 
 
 
 
 
 
6be0e9c
5170076
a7f2116
 
 
 
 
 
 
5170076
 
 
 
 
a7f2116
679fbc2
c84ed95
a7f2116
 
 
 
 
 
 
556b288
38045c5
2d4b120
a7f2116
 
79668b2
1060543
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
import pandas as pd
import streamlit as st
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
from utils import ascending_metrics, metric_ranges
import numpy as np
from st_aggrid import AgGrid, GridOptionsBuilder, JsCode
from os.path import exists
import threading

st.set_page_config(layout="wide")


def get_model_infos():
    api = HfApi()
    model_infos = api.list_models(filter="model-index", cardData=True)
    return model_infos


def parse_metric_value(value):
    if isinstance(value, str):
        "".join(value.split("%"))
        try:
            value = float(value)
        except:  # noqa: E722
            value = None
    elif isinstance(value, list):
        if len(value) > 0:
            value = value[0]
        else:
            value = None
    value = round(value, 4) if isinstance(value, float) else None
    return value


def parse_metrics_rows(meta, only_verified=False):
    if not isinstance(meta["model-index"], list) or len(meta["model-index"]) == 0 or "results" not in meta["model-index"][0]:
        return None
    for result in meta["model-index"][0]["results"]:
        if not isinstance(result, dict) or "dataset" not in result or "metrics" not in result or "type" not in result["dataset"]:
            continue
        dataset = result["dataset"]["type"]
        if dataset == "":
            continue
        row = {"dataset": dataset, "split": "-unspecified-", "config": "-unspecified-"}
        if "split" in result["dataset"]:
            row["split"] = result["dataset"]["split"]
        if "config" in result["dataset"]:
            row["config"] = result["dataset"]["config"]
        no_results = True
        incorrect_results = False
        for metric in result["metrics"]:
            name = metric["type"].lower().strip()

            if name in ("model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"):
                # Metrics are not allowed to be named "dataset", "split", "config", "pipeline_tag"
                continue
            value = parse_metric_value(metric.get("value", None))
            if value is None:
                continue
            if name in row:
                new_metric_better = value < row[name] if name in ascending_metrics else value > row[name]
            if name not in row or new_metric_better:
                # overwrite the metric if the new value is better.

                if only_verified:
                    if "verified" in metric and metric["verified"]:
                        no_results = False
                        row[name] = value
                        if name in metric_ranges:
                            if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
                                incorrect_results = True
                else:
                    no_results = False
                    row[name] = value
                    if name in metric_ranges:
                        if value < metric_ranges[name][0] or value > metric_ranges[name][1]:
                            incorrect_results = True
        if no_results or incorrect_results:
            continue
        yield row

@st.cache(ttl=0)
def get_data_wrapper():

    def get_data(dataframe=None, verified_dataframe=None):
        data = []
        verified_data = []
        print("getting model infos")
        model_infos = get_model_infos()
        print("got model infos")
        for model_info in model_infos:
            meta = model_info.cardData
            if meta is None:
                continue
            for row in parse_metrics_rows(meta):
                if row is None:
                    continue
                row["model_id"] = model_info.id
                row["pipeline_tag"] = model_info.pipeline_tag
                row["only_verified"] = False
                data.append(row)
            for row in parse_metrics_rows(meta, only_verified=True):
                if row is None:
                    continue
                row["model_id"] = model_info.id
                row["pipeline_tag"] = model_info.pipeline_tag
                row["only_verified"] = True
                data.append(row)
        dataframe = pd.DataFrame.from_records(data)
        dataframe.to_pickle("cache.pkl")

    if exists("cache.pkl"):
        # If we have saved the results previously, call an asynchronous process
        # to fetch the results and update the saved file. Don't make users wait
        # while we fetch the new results. Instead, display the old results for
        # now. The new results should be loaded when this method
        # is called again.
        dataframe = pd.read_pickle("cache.pkl")
        t = threading.Thread(name="get_data procs", target=get_data)
        t.start()
    else:
        # We have to make the users wait during the first startup of this app.
        get_data()
        dataframe = pd.read_pickle("cache.pkl")

    return dataframe

dataframe = get_data_wrapper()

st.markdown("# 🤗 Leaderboards")

query_params = st.experimental_get_query_params()
if "first_query_params" not in st.session_state:
    st.session_state.first_query_params = query_params
first_query_params = st.session_state.first_query_params

default_task = first_query_params.get("task", [None])[0]
default_only_verified = bool(int(first_query_params.get("only_verified", [0])[0]))
print(default_only_verified)
default_dataset = first_query_params.get("dataset", [None])[0]
default_split = first_query_params.get("split", [None])[0]
default_config = first_query_params.get("config", [None])[0]
default_metric = first_query_params.get("metric", [None])[0]

only_verified_results = st.sidebar.checkbox(
    "Filter for Verified Results",
    value=default_only_verified,
    help="Select this checkbox if you want to see only results produced by the Hugging Face model evaluator, and no self-reported results."
)

selectable_tasks = list(set(dataframe.pipeline_tag))
if None in selectable_tasks:
    selectable_tasks.remove(None)
selectable_tasks.sort(key=lambda name: name.lower())
selectable_tasks = ["-any-"] + selectable_tasks

task = st.sidebar.selectbox(
    "Task",
    selectable_tasks,
    index=(selectable_tasks).index(default_task) if default_task in selectable_tasks else 0,
    help="Filter the selectable datasets by task. Leave as \"-any-\" to see all selectable datasets."
)

if task != "-any-":
    dataframe = dataframe[dataframe.pipeline_tag == task]

selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
if "" in selectable_datasets:
    selectable_datasets.remove("")

dataset = st.sidebar.selectbox(
    "Dataset",
    selectable_datasets,
    index=selectable_datasets.index(default_dataset) if default_dataset in selectable_datasets else 0,
    help="Select a dataset to see the leaderboard!"
)

dataframe = dataframe[dataframe.only_verified == only_verified_results]

current_query_params = {"dataset": [dataset], "only_verified": [int(only_verified_results)], "task": [task]}

st.experimental_set_query_params(**current_query_params)

if dataset != "-any-":
    dataset_df = dataframe[dataframe.dataset == dataset]
else:
    dataset_df = dataframe

dataset_df = dataset_df.dropna(axis="columns", how="all")

if len(dataset_df) > 0:
    selectable_configs = list(set(dataset_df["config"]))
    selectable_configs.sort(key=lambda name: name.lower())

    if "-unspecified-" in config_set:
        selectable_configs.discard("-unspecified-")
        selectable_configs = ["-unspecified-"] + selectable_configs

    if dataset != "-any-":
        config = st.sidebar.selectbox(
            "Config",
            selectable_configs,
            index=selectable_configs.index(default_config) if default_config in selectable_configs else 0,
            help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
        )
        dataset_df = dataset_df[dataset_df.config == config]

        selectable_splits = list(set(dataset_df["split"]))
        selectable_splits.sort(key=lambda name: name.lower())

        if "-unspecified-" in split_set:
            selectable_splits.discard("-unspecified-")
            selectable_splits = ["-unspecified-"] + selectable_splits

        split = st.sidebar.selectbox(
            "Split",
            selectable_splits,
            index=selectable_splits.index(default_split) if default_split in selectable_splits else 0,
            help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
        )

        current_query_params.update({"config": [config], "split": [split]})

        st.experimental_set_query_params(**current_query_params)

        dataset_df = dataset_df[dataset_df.split == split]

    not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
    selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))

    dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
    dataset_df = dataset_df.dropna(thresh=2)  # Want at least two non-na values (one for model_id and one for a metric).

    sorting_metric = st.sidebar.radio(
        "Sorting Metric",
        selectable_metrics,
        index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
        help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
    )

    current_query_params.update({"metric": [sorting_metric]})

    st.experimental_set_query_params(**current_query_params)

    st.markdown(
        "Please click on the model's name to be redirected to its model card."
    )

    st.markdown(
        "Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/model-evaluator)."
    )

    st.markdown(
        "If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
    )

    if dataset == "-any-":
        st.info(
            "Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for a random sample of the datasets available."
        )

    # Make the default metric appear right after model names and dataset names
    cols = dataset_df.columns.tolist()
    cols.remove(sorting_metric)
    sorting_metric_index = 1 if dataset != "-any-" else 2
    cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
    dataset_df = dataset_df[cols]

    # Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
    dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
    dataset_df = dataset_df.replace(np.nan, '-')

    # If dataset is "-any-", only show the best model for a random sample of 100 datasets.
    # Otherwise The leaderboard is way too long and doesn't give the users a feel for all of
    # the datasets available for a task.
    if dataset == "-any-":
        filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
        seen_datasets = set()
        for _, row in dataset_df.iterrows():
            if row["dataset"] not in seen_datasets:
                for column in dataset_df.columns:
                    filtered_dataset_df_dict[column].append(row[column])
                seen_datasets.add(row["dataset"])
        dataset_df = pd.DataFrame(filtered_dataset_df_dict)
        dataset_df = dataset_df.sample(min(100, len(dataset_df)))

    # Make the leaderboard
    gb = GridOptionsBuilder.from_dataframe(dataset_df)
    gb.configure_default_column(sortable=False)
    gb.configure_column(
        "model_id",
        cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
    )
    if dataset == "-any-":
        gb.configure_column(
            "dataset",
            cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/spaces/autoevaluate/leaderboards?dataset='+params.value+'">'+params.value+'</a>'}'''),
        )
    for name in selectable_metrics:
        gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')

    gb.configure_column(
        sorting_metric,
        sortable=True,
        cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
    )

    go = gb.build()
    fit_columns = len(dataset_df.columns) < 10
    AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)

else:
    st.markdown(
        "No " + ("verified" if only_verified_results else "unverified") + " results to display. Try toggling the verified results filter."
    )