lewtun HF staff commited on
Commit
3fcfca4
·
1 Parent(s): bcc5243

Archive project

Browse files
Files changed (2) hide show
  1. __pycache__/utils.cpython-38.pyc +0 -0
  2. app.py +185 -182
__pycache__/utils.cpython-38.pyc ADDED
Binary file (661 Bytes). View file
 
app.py CHANGED
@@ -126,191 +126,194 @@ def get_data_wrapper():
126
 
127
  return dataframe
128
 
129
- dataframe = get_data_wrapper()
130
 
131
  st.markdown("# 🤗 Leaderboards")
132
-
133
- query_params = st.experimental_get_query_params()
134
- if "first_query_params" not in st.session_state:
135
- st.session_state.first_query_params = query_params
136
- first_query_params = st.session_state.first_query_params
137
-
138
- default_task = first_query_params.get("task", [None])[0]
139
- default_only_verified = bool(int(first_query_params.get("only_verified", [0])[0]))
140
- print(default_only_verified)
141
- default_dataset = first_query_params.get("dataset", [None])[0]
142
- default_split = first_query_params.get("split", [None])[0]
143
- default_config = first_query_params.get("config", [None])[0]
144
- default_metric = first_query_params.get("metric", [None])[0]
145
-
146
- only_verified_results = st.sidebar.checkbox(
147
- "Filter for Verified Results",
148
- value=default_only_verified,
149
- help="Select this checkbox if you want to see only results produced by the Hugging Face model evaluator, and no self-reported results."
150
- )
151
-
152
- selectable_tasks = list(set(dataframe.pipeline_tag))
153
- if None in selectable_tasks:
154
- selectable_tasks.remove(None)
155
- selectable_tasks.sort(key=lambda name: name.lower())
156
- selectable_tasks = ["-any-"] + selectable_tasks
157
-
158
- task = st.sidebar.selectbox(
159
- "Task",
160
- selectable_tasks,
161
- index=(selectable_tasks).index(default_task) if default_task in selectable_tasks else 0,
162
- help="Filter the selectable datasets by task. Leave as \"-any-\" to see all selectable datasets."
163
- )
164
-
165
- if task != "-any-":
166
- dataframe = dataframe[dataframe.pipeline_tag == task]
167
-
168
- selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
169
- if "" in selectable_datasets:
170
- selectable_datasets.remove("")
171
-
172
- dataset = st.sidebar.selectbox(
173
- "Dataset",
174
- selectable_datasets,
175
- index=selectable_datasets.index(default_dataset) if default_dataset in selectable_datasets else 0,
176
- help="Select a dataset to see the leaderboard!"
177
  )
178
 
179
- dataframe = dataframe[dataframe.only_verified == only_verified_results]
180
-
181
- current_query_params = {"dataset": [dataset], "only_verified": [int(only_verified_results)], "task": [task]}
 
 
 
 
 
 
 
 
 
182
 
183
- st.experimental_set_query_params(**current_query_params)
 
 
 
 
 
 
 
 
 
 
184
 
185
- if dataset != "-any-":
186
- dataset_df = dataframe[dataframe.dataset == dataset]
187
- else:
188
- dataset_df = dataframe
189
-
190
- dataset_df = dataset_df.dropna(axis="columns", how="all")
191
-
192
- if len(dataset_df) > 0:
193
- selectable_configs = list(set(dataset_df["config"]))
194
- selectable_configs.sort(key=lambda name: name.lower())
195
-
196
- if "-unspecified-" in selectable_configs:
197
- selectable_configs.remove("-unspecified-")
198
- selectable_configs = ["-unspecified-"] + selectable_configs
199
-
200
- if dataset != "-any-":
201
- config = st.sidebar.selectbox(
202
- "Config",
203
- selectable_configs,
204
- index=selectable_configs.index(default_config) if default_config in selectable_configs else 0,
205
- help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
206
- )
207
- dataset_df = dataset_df[dataset_df.config == config]
208
-
209
- selectable_splits = list(set(dataset_df["split"]))
210
- selectable_splits.sort(key=lambda name: name.lower())
211
-
212
- if "-unspecified-" in selectable_splits:
213
- selectable_splits.remove("-unspecified-")
214
- selectable_splits = ["-unspecified-"] + selectable_splits
215
-
216
- split = st.sidebar.selectbox(
217
- "Split",
218
- selectable_splits,
219
- index=selectable_splits.index(default_split) if default_split in selectable_splits else 0,
220
- help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
221
- )
222
-
223
- current_query_params.update({"config": [config], "split": [split]})
224
-
225
- st.experimental_set_query_params(**current_query_params)
226
-
227
- dataset_df = dataset_df[dataset_df.split == split]
228
-
229
- not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
230
- selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))
231
-
232
- dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
233
- dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
234
-
235
- sorting_metric = st.sidebar.radio(
236
- "Sorting Metric",
237
- selectable_metrics,
238
- index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
239
- help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
240
- )
241
-
242
- current_query_params.update({"metric": [sorting_metric]})
243
-
244
- st.experimental_set_query_params(**current_query_params)
245
-
246
- st.markdown(
247
- "Please click on the model's name to be redirected to its model card."
248
- )
249
-
250
- st.markdown(
251
- "Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/model-evaluator)."
252
- )
253
-
254
- st.markdown(
255
- "If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
256
- )
257
-
258
- if dataset == "-any-":
259
- st.info(
260
- "Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for a random sample of the datasets available."
261
- )
262
-
263
- # Make the default metric appear right after model names and dataset names
264
- cols = dataset_df.columns.tolist()
265
- cols.remove(sorting_metric)
266
- sorting_metric_index = 1 if dataset != "-any-" else 2
267
- cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
268
- dataset_df = dataset_df[cols]
269
-
270
- # Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
271
- dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
272
- dataset_df = dataset_df.replace(np.nan, '-')
273
-
274
- # If dataset is "-any-", only show the best model for a random sample of 100 datasets.
275
- # Otherwise The leaderboard is way too long and doesn't give the users a feel for all of
276
- # the datasets available for a task.
277
- if dataset == "-any-":
278
- filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
279
- seen_datasets = set()
280
- for _, row in dataset_df.iterrows():
281
- if row["dataset"] not in seen_datasets:
282
- for column in dataset_df.columns:
283
- filtered_dataset_df_dict[column].append(row[column])
284
- seen_datasets.add(row["dataset"])
285
- dataset_df = pd.DataFrame(filtered_dataset_df_dict)
286
- dataset_df = dataset_df.sample(min(100, len(dataset_df)))
287
-
288
- # Make the leaderboard
289
- gb = GridOptionsBuilder.from_dataframe(dataset_df)
290
- gb.configure_default_column(sortable=False)
291
- gb.configure_column(
292
- "model_id",
293
- cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
294
- )
295
- if dataset == "-any-":
296
- gb.configure_column(
297
- "dataset",
298
- cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/spaces/autoevaluate/leaderboards?dataset='+params.value+'">'+params.value+'</a>'}'''),
299
- )
300
- for name in selectable_metrics:
301
- gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
302
-
303
- gb.configure_column(
304
- sorting_metric,
305
- sortable=True,
306
- cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
307
- )
308
-
309
- go = gb.build()
310
- fit_columns = len(dataset_df.columns) < 10
311
- AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)
312
-
313
- else:
314
- st.markdown(
315
- "No " + ("verified" if only_verified_results else "unverified") + " results to display. Try toggling the verified results filter."
316
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126
 
127
  return dataframe
128
 
129
+ # dataframe = get_data_wrapper()
130
 
131
  st.markdown("# 🤗 Leaderboards")
132
+ st.warning(
133
+ "**⚠️ This project has been archived. If you want to evaluate LLMs, checkout [this collection](https://huggingface.co/collections/clefourrier/llm-leaderboards-and-benchmarks-✨-64f99d2e11e92ca5568a7cce) of leaderboards.**"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  )
135
 
136
+ # query_params = st.experimental_get_query_params()
137
+ # if "first_query_params" not in st.session_state:
138
+ # st.session_state.first_query_params = query_params
139
+ # first_query_params = st.session_state.first_query_params
140
+
141
+ # default_task = first_query_params.get("task", [None])[0]
142
+ # default_only_verified = bool(int(first_query_params.get("only_verified", [0])[0]))
143
+ # print(default_only_verified)
144
+ # default_dataset = first_query_params.get("dataset", [None])[0]
145
+ # default_split = first_query_params.get("split", [None])[0]
146
+ # default_config = first_query_params.get("config", [None])[0]
147
+ # default_metric = first_query_params.get("metric", [None])[0]
148
 
149
+ # only_verified_results = st.sidebar.checkbox(
150
+ # "Filter for Verified Results",
151
+ # value=default_only_verified,
152
+ # help="Select this checkbox if you want to see only results produced by the Hugging Face model evaluator, and no self-reported results."
153
+ # )
154
+
155
+ # selectable_tasks = list(set(dataframe.pipeline_tag))
156
+ # if None in selectable_tasks:
157
+ # selectable_tasks.remove(None)
158
+ # selectable_tasks.sort(key=lambda name: name.lower())
159
+ # selectable_tasks = ["-any-"] + selectable_tasks
160
 
161
+ # task = st.sidebar.selectbox(
162
+ # "Task",
163
+ # selectable_tasks,
164
+ # index=(selectable_tasks).index(default_task) if default_task in selectable_tasks else 0,
165
+ # help="Filter the selectable datasets by task. Leave as \"-any-\" to see all selectable datasets."
166
+ # )
167
+
168
+ # if task != "-any-":
169
+ # dataframe = dataframe[dataframe.pipeline_tag == task]
170
+
171
+ # selectable_datasets = ["-any-"] + sorted(list(set(dataframe.dataset.tolist())), key=lambda name: name.lower())
172
+ # if "" in selectable_datasets:
173
+ # selectable_datasets.remove("")
174
+
175
+ # dataset = st.sidebar.selectbox(
176
+ # "Dataset",
177
+ # selectable_datasets,
178
+ # index=selectable_datasets.index(default_dataset) if default_dataset in selectable_datasets else 0,
179
+ # help="Select a dataset to see the leaderboard!"
180
+ # )
181
+
182
+ # dataframe = dataframe[dataframe.only_verified == only_verified_results]
183
+
184
+ # current_query_params = {"dataset": [dataset], "only_verified": [int(only_verified_results)], "task": [task]}
185
+
186
+ # st.experimental_set_query_params(**current_query_params)
187
+
188
+ # if dataset != "-any-":
189
+ # dataset_df = dataframe[dataframe.dataset == dataset]
190
+ # else:
191
+ # dataset_df = dataframe
192
+
193
+ # dataset_df = dataset_df.dropna(axis="columns", how="all")
194
+
195
+ # if len(dataset_df) > 0:
196
+ # selectable_configs = list(set(dataset_df["config"]))
197
+ # selectable_configs.sort(key=lambda name: name.lower())
198
+
199
+ # if "-unspecified-" in selectable_configs:
200
+ # selectable_configs.remove("-unspecified-")
201
+ # selectable_configs = ["-unspecified-"] + selectable_configs
202
+
203
+ # if dataset != "-any-":
204
+ # config = st.sidebar.selectbox(
205
+ # "Config",
206
+ # selectable_configs,
207
+ # index=selectable_configs.index(default_config) if default_config in selectable_configs else 0,
208
+ # help="Filter the results on the current leaderboard by the dataset config. Self-reported results might not report the config, which is why \"-unspecified-\" is an option."
209
+ # )
210
+ # dataset_df = dataset_df[dataset_df.config == config]
211
+
212
+ # selectable_splits = list(set(dataset_df["split"]))
213
+ # selectable_splits.sort(key=lambda name: name.lower())
214
+
215
+ # if "-unspecified-" in selectable_splits:
216
+ # selectable_splits.remove("-unspecified-")
217
+ # selectable_splits = ["-unspecified-"] + selectable_splits
218
+
219
+ # split = st.sidebar.selectbox(
220
+ # "Split",
221
+ # selectable_splits,
222
+ # index=selectable_splits.index(default_split) if default_split in selectable_splits else 0,
223
+ # help="Filter the results on the current leaderboard by the dataset split. Self-reported results might not report the split, which is why \"-unspecified-\" is an option."
224
+ # )
225
+
226
+ # current_query_params.update({"config": [config], "split": [split]})
227
+
228
+ # st.experimental_set_query_params(**current_query_params)
229
+
230
+ # dataset_df = dataset_df[dataset_df.split == split]
231
+
232
+ # not_selectable_metrics = ["model_id", "dataset", "split", "config", "pipeline_tag", "only_verified"]
233
+ # selectable_metrics = list(filter(lambda column: column not in not_selectable_metrics, dataset_df.columns))
234
+
235
+ # dataset_df = dataset_df.filter(["model_id"] + (["dataset"] if dataset == "-any-" else []) + selectable_metrics)
236
+ # dataset_df = dataset_df.dropna(thresh=2) # Want at least two non-na values (one for model_id and one for a metric).
237
+
238
+ # sorting_metric = st.sidebar.radio(
239
+ # "Sorting Metric",
240
+ # selectable_metrics,
241
+ # index=selectable_metrics.index(default_metric) if default_metric in selectable_metrics else 0,
242
+ # help="Select the metric to sort the leaderboard by. Click on the metric name in the leaderboard to reverse the sorting order."
243
+ # )
244
+
245
+ # current_query_params.update({"metric": [sorting_metric]})
246
+
247
+ # st.experimental_set_query_params(**current_query_params)
248
+
249
+ # st.markdown(
250
+ # "Please click on the model's name to be redirected to its model card."
251
+ # )
252
+
253
+ # st.markdown(
254
+ # "Want to beat the leaderboard? Don't see your model here? Simply request an automatic evaluation [here](https://huggingface.co/spaces/autoevaluate/model-evaluator)."
255
+ # )
256
+
257
+ # st.markdown(
258
+ # "If you do not see your self-reported results here, ensure that your results are in the expected range for all metrics. E.g., accuracy is 0-1, not 0-100."
259
+ # )
260
+
261
+ # if dataset == "-any-":
262
+ # st.info(
263
+ # "Note: you haven't chosen a dataset, so the leaderboard is showing the best scoring model for a random sample of the datasets available."
264
+ # )
265
+
266
+ # # Make the default metric appear right after model names and dataset names
267
+ # cols = dataset_df.columns.tolist()
268
+ # cols.remove(sorting_metric)
269
+ # sorting_metric_index = 1 if dataset != "-any-" else 2
270
+ # cols = cols[:sorting_metric_index] + [sorting_metric] + cols[sorting_metric_index:]
271
+ # dataset_df = dataset_df[cols]
272
+
273
+ # # Sort the leaderboard, giving the sorting metric highest priority and then ordering by other metrics in the case of equal values.
274
+ # dataset_df = dataset_df.sort_values(by=cols[sorting_metric_index:], ascending=[metric in ascending_metrics for metric in cols[sorting_metric_index:]])
275
+ # dataset_df = dataset_df.replace(np.nan, '-')
276
+
277
+ # # If dataset is "-any-", only show the best model for a random sample of 100 datasets.
278
+ # # Otherwise The leaderboard is way too long and doesn't give the users a feel for all of
279
+ # # the datasets available for a task.
280
+ # if dataset == "-any-":
281
+ # filtered_dataset_df_dict = {column: [] for column in dataset_df.columns}
282
+ # seen_datasets = set()
283
+ # for _, row in dataset_df.iterrows():
284
+ # if row["dataset"] not in seen_datasets:
285
+ # for column in dataset_df.columns:
286
+ # filtered_dataset_df_dict[column].append(row[column])
287
+ # seen_datasets.add(row["dataset"])
288
+ # dataset_df = pd.DataFrame(filtered_dataset_df_dict)
289
+ # dataset_df = dataset_df.sample(min(100, len(dataset_df)))
290
+
291
+ # # Make the leaderboard
292
+ # gb = GridOptionsBuilder.from_dataframe(dataset_df)
293
+ # gb.configure_default_column(sortable=False)
294
+ # gb.configure_column(
295
+ # "model_id",
296
+ # cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/'+params.value+'">'+params.value+'</a>'}'''),
297
+ # )
298
+ # if dataset == "-any-":
299
+ # gb.configure_column(
300
+ # "dataset",
301
+ # cellRenderer=JsCode('''function(params) {return '<a target="_blank" href="https://huggingface.co/spaces/autoevaluate/leaderboards?dataset='+params.value+'">'+params.value+'</a>'}'''),
302
+ # )
303
+ # for name in selectable_metrics:
304
+ # gb.configure_column(name, type=["numericColumn","numberColumnFilter","customNumericFormat"], precision=4, aggFunc='sum')
305
+
306
+ # gb.configure_column(
307
+ # sorting_metric,
308
+ # sortable=True,
309
+ # cellStyle=JsCode('''function(params) { return {'backgroundColor': '#FFD21E'}}''')
310
+ # )
311
+
312
+ # go = gb.build()
313
+ # fit_columns = len(dataset_df.columns) < 10
314
+ # AgGrid(dataset_df, gridOptions=go, height=28*len(dataset_df) + (35 if fit_columns else 41), allow_unsafe_jscode=True, fit_columns_on_grid_load=fit_columns, enable_enterprise_modules=False)
315
+
316
+ # else:
317
+ # st.markdown(
318
+ # "No " + ("verified" if only_verified_results else "unverified") + " results to display. Try toggling the verified results filter."
319
+ # )