model-evaluator / app.py
lewtun's picture
lewtun HF staff
Add local dev
580b4e4
raw
history blame
24.8 kB
import os
import time
from pathlib import Path
import pandas as pd
import streamlit as st
import yaml
from datasets import get_dataset_config_names
from dotenv import load_dotenv
from huggingface_hub import list_datasets
from evaluation import filter_evaluated_models
from utils import (
AUTOTRAIN_TASK_TO_HUB_TASK,
commit_evaluation_log,
create_autotrain_project_name,
format_col_mapping,
get_compatible_models,
get_dataset_card_url,
get_key,
get_metadata,
http_get,
http_post,
)
if Path(".env").is_file():
load_dotenv(".env")
HF_TOKEN = os.getenv("HF_TOKEN")
AUTOTRAIN_USERNAME = os.getenv("AUTOTRAIN_USERNAME")
AUTOTRAIN_BACKEND_API = os.getenv("AUTOTRAIN_BACKEND_API")
DATASETS_PREVIEW_API = os.getenv("DATASETS_PREVIEW_API")
# Put image tasks on top
TASK_TO_ID = {
"image_binary_classification": 17,
"image_multi_class_classification": 18,
"binary_classification": 1,
"multi_class_classification": 2,
"entity_extraction": 4,
"extractive_question_answering": 5,
"translation": 6,
"summarization": 8,
}
TASK_TO_DEFAULT_METRICS = {
"binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
"multi_class_classification": [
"f1",
"precision",
"recall",
"accuracy",
],
"entity_extraction": ["precision", "recall", "f1", "accuracy"],
"extractive_question_answering": ["f1", "exact_match"],
"translation": ["sacrebleu"],
"summarization": ["rouge1", "rouge2", "rougeL", "rougeLsum"],
"image_binary_classification": ["f1", "precision", "recall", "auc", "accuracy"],
"image_multi_class_classification": [
"f1",
"precision",
"recall",
"accuracy",
],
}
AUTOTRAIN_TASK_TO_LANG = {
"translation": "en2de",
"image_binary_classification": "unk",
"image_multi_class_classification": "unk",
}
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
UNSUPPORTED_TASKS = []
# Extracted from utils.get_supported_metrics
# Hardcoded for now due to speed / caching constraints
SUPPORTED_METRICS = [
"accuracy",
"bertscore",
"bleu",
"cer",
"chrf",
"code_eval",
"comet",
"competition_math",
"coval",
"cuad",
"exact_match",
"f1",
"frugalscore",
"google_bleu",
"mae",
"mahalanobis",
"matthews_correlation",
"mean_iou",
"meteor",
"mse",
"pearsonr",
"perplexity",
"precision",
"recall",
"roc_auc",
"rouge",
"sacrebleu",
"sari",
"seqeval",
"spearmanr",
"squad",
"squad_v2",
"ter",
"trec_eval",
"wer",
"wiki_split",
"xnli",
"angelina-wang/directional_bias_amplification",
"jordyvl/ece",
"lvwerra/ai4code",
"lvwerra/amex",
"lvwerra/test",
"lvwerra/test_metric",
]
#######
# APP #
#######
st.title("Evaluation on the Hub")
st.markdown(
"""
Welcome to Hugging Face's automatic model evaluator πŸ‘‹!
This application allows you to evaluate πŸ€— Transformers
[models](https://huggingface.co/models?library=transformers&sort=downloads)
across a wide variety of [datasets](https://huggingface.co/datasets) on the
Hub. Please select the dataset and configuration below. The results of your
evaluation will be displayed on the [public
leaderboards](https://huggingface.co/spaces/autoevaluate/leaderboards). For
more details, check out out our [blog
post](https://huggingface.co/blog/eval-on-the-hub).
"""
)
all_datasets = [d.id for d in list_datasets()]
query_params = st.experimental_get_query_params()
if "first_query_params" not in st.session_state:
st.session_state.first_query_params = query_params
first_query_params = st.session_state.first_query_params
default_dataset = all_datasets[0]
if "dataset" in first_query_params:
if len(first_query_params["dataset"]) > 0 and first_query_params["dataset"][0] in all_datasets:
default_dataset = first_query_params["dataset"][0]
selected_dataset = st.selectbox(
"Select a dataset",
all_datasets,
index=all_datasets.index(default_dataset),
help="""Datasets with metadata can be evaluated with 1-click. Configure an evaluation job to add \
new metadata to a dataset card.""",
)
st.experimental_set_query_params(**{"dataset": [selected_dataset]})
# Check if selected dataset can be streamed
is_valid_dataset = http_get(
path="/is-valid",
domain=DATASETS_PREVIEW_API,
params={"dataset": selected_dataset},
).json()
if is_valid_dataset["valid"] is False:
st.error(
"""The dataset you selected is not currently supported. Open a \
[discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) for support."""
)
metadata = get_metadata(selected_dataset, token=HF_TOKEN)
print(f"INFO -- Dataset metadata: {metadata}")
if metadata is None:
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
with st.expander("Advanced configuration"):
# Select task
# Hack to filter for unsupported tasks
# TODO(lewtun): remove this once we have SQuAD metrics support
if metadata is not None and metadata[0]["task_id"] in UNSUPPORTED_TASKS:
metadata = None
selected_task = st.selectbox(
"Select a task",
SUPPORTED_TASKS,
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
help="""Don't see your favourite task here? Open a \
[discussion](https://huggingface.co/spaces/autoevaluate/model-evaluator/discussions) to request it!""",
)
# Select config
configs = get_dataset_config_names(selected_dataset)
selected_config = st.selectbox(
"Select a config",
configs,
help="""Some datasets contain several sub-datasets, known as _configurations_. \
Select one to evaluate your models on. \
See the [docs](https://huggingface.co/docs/datasets/master/en/load_hub#configurations) for more details.
""",
)
# Select splits
splits_resp = http_get(
path="/splits",
domain=DATASETS_PREVIEW_API,
params={"dataset": selected_dataset},
)
if splits_resp.status_code == 200:
split_names = []
all_splits = splits_resp.json()
for split in all_splits["splits"]:
if split["config"] == selected_config:
split_names.append(split["split"])
if metadata is not None:
eval_split = metadata[0]["splits"].get("eval_split", None)
else:
eval_split = None
selected_split = st.selectbox(
"Select a split",
split_names,
index=split_names.index(eval_split) if eval_split is not None else 0,
help="Be wary when evaluating models on the `train` split.",
)
# Select columns
rows_resp = http_get(
path="/rows",
domain=DATASETS_PREVIEW_API,
params={
"dataset": selected_dataset,
"config": selected_config,
"split": selected_split,
},
).json()
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
st.markdown("**Map your dataset columns**")
st.markdown(
"""The model evaluator uses a standardised set of column names for the input examples and labels. \
Please define the mapping between your dataset columns (right) and the standardised column names (left)."""
)
col1, col2 = st.columns(2)
# TODO: find a better way to layout these items
# TODO: need graceful way of handling dataset <--> task mismatch for datasets with metadata
col_mapping = {}
if selected_task in ["binary_classification", "multi_class_classification"]:
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text to be classified",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the labels associated with the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "entity_extraction":
with col1:
st.markdown("`tokens` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`tags` column")
with col2:
tokens_col = st.selectbox(
"This column should contain the array of tokens to be classified",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
)
tags_col = st.selectbox(
"This column should contain the labels associated with each part of the text",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "tags")) if metadata is not None else 0,
)
col_mapping[tokens_col] = "tokens"
col_mapping[tags_col] = "tags"
elif selected_task == "translation":
with col1:
st.markdown("`source` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text to be translated",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "source")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the target translation",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "source"
col_mapping[target_col] = "target"
elif selected_task == "summarization":
with col1:
st.markdown("`text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
text_col = st.selectbox(
"This column should contain the text to be summarized",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "text")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the target summary",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[text_col] = "text"
col_mapping[target_col] = "target"
elif selected_task == "extractive_question_answering":
if metadata is not None:
col_mapping = metadata[0]["col_mapping"]
# Hub YAML parser converts periods to hyphens, so we remap them here
col_mapping = format_col_mapping(col_mapping)
with col1:
st.markdown("`context` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`question` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.text` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`answers.answer_start` column")
with col2:
context_col = st.selectbox(
"This column should contain the question's context",
col_names,
index=col_names.index(get_key(col_mapping, "context")) if metadata is not None else 0,
)
question_col = st.selectbox(
"This column should contain the question to be answered, given the context",
col_names,
index=col_names.index(get_key(col_mapping, "question")) if metadata is not None else 0,
)
answers_text_col = st.selectbox(
"This column should contain example answers to the question, extracted from the context",
col_names,
index=col_names.index(get_key(col_mapping, "answers.text")) if metadata is not None else 0,
)
answers_start_col = st.selectbox(
"This column should contain the indices in the context of the first character of each `answers.text`",
col_names,
index=col_names.index(get_key(col_mapping, "answers.answer_start")) if metadata is not None else 0,
)
col_mapping[context_col] = "context"
col_mapping[question_col] = "question"
col_mapping[answers_text_col] = "answers.text"
col_mapping[answers_start_col] = "answers.answer_start"
elif selected_task in ["image_binary_classification", "image_multi_class_classification"]:
with col1:
st.markdown("`image` column")
st.text("")
st.text("")
st.text("")
st.text("")
st.markdown("`target` column")
with col2:
image_col = st.selectbox(
"This column should contain the images to be classified",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "image")) if metadata is not None else 0,
)
target_col = st.selectbox(
"This column should contain the labels associated with the images",
col_names,
index=col_names.index(get_key(metadata[0]["col_mapping"], "target")) if metadata is not None else 0,
)
col_mapping[image_col] = "image"
col_mapping[target_col] = "target"
# Select metrics
st.markdown("**Select metrics**")
st.markdown("The following metrics will be computed")
html_string = " ".join(
[
'<div style="padding-right:5px;padding-left:5px;padding-top:5px;padding-bottom:5px;float:left">'
+ '<div style="background-color:#D3D3D3;border-radius:5px;display:inline-block;padding-right:5px;'
+ 'padding-left:5px;color:white">'
+ metric
+ "</div></div>"
for metric in TASK_TO_DEFAULT_METRICS[selected_task]
]
)
st.markdown(html_string, unsafe_allow_html=True)
selected_metrics = st.multiselect(
"(Optional) Select additional metrics",
sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
help="""User-selected metrics will be computed with their default arguments. \
For example, `f1` will report results for binary labels. \
Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
)
with st.form(key="form"):
compatible_models = get_compatible_models(selected_task, [selected_dataset])
selected_models = st.multiselect(
"Select the models you wish to evaluate",
compatible_models,
help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
)
print("INFO -- Selected models before filter:", selected_models)
hf_username = st.text_input("Enter your πŸ€— Hub username to be notified when the evaluation is finished")
submit_button = st.form_submit_button("Evaluate models πŸš€")
if submit_button:
if len(hf_username) == 0:
st.warning("No πŸ€— Hub username provided! Please enter your username and try again.")
elif len(selected_models) == 0:
st.warning("⚠️ No models were selected for evaluation! Please select at least one model and try again.")
elif len(selected_models) > 10:
st.warning("Only 10 models can be evaluated at once. Please select fewer models and try again.")
else:
# Filter out previously evaluated models
selected_models = filter_evaluated_models(
selected_models,
selected_task,
selected_dataset,
selected_config,
selected_split,
selected_metrics,
)
print("INFO -- Selected models after filter:", selected_models)
if len(selected_models) > 0:
project_payload = {
"username": AUTOTRAIN_USERNAME,
"proj_name": create_autotrain_project_name(selected_dataset),
"task": TASK_TO_ID[selected_task],
"config": {
"language": AUTOTRAIN_TASK_TO_LANG[selected_task]
if selected_task in AUTOTRAIN_TASK_TO_LANG
else "en",
"max_models": 5,
"instance": {
"provider": "aws",
"instance_type": "ml.g4dn.4xlarge",
"max_runtime_seconds": 172800,
"num_instances": 1,
"disk_size_gb": 150,
},
"evaluation": {
"metrics": selected_metrics,
"models": selected_models,
"hf_username": hf_username,
},
},
}
print(f"INFO -- Payload: {project_payload}")
project_json_resp = http_post(
path="/projects/create",
payload=project_payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
print(f"INFO -- Project creation response: {project_json_resp}")
if project_json_resp["created"]:
data_payload = {
"split": 4, # use "auto" split choice in AutoTrain
"col_mapping": col_mapping,
"load_config": {"max_size_bytes": 0, "shuffle": False},
}
data_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
payload=data_payload,
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
params={
"type": "dataset",
"config_name": selected_config,
"split_name": selected_split,
},
).json()
print(f"INFO -- Dataset creation response: {data_json_resp}")
if data_json_resp["download_status"] == 1:
train_json_resp = http_post(
path=f"/projects/{project_json_resp['id']}/data/start_processing",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
# For local development we process and approve projects on-the-fly
if "localhost" in AUTOTRAIN_BACKEND_API:
with st.spinner("⏳ Waiting for data processing to complete ..."):
is_data_processing_success = False
while is_data_processing_success is not True:
project_status = http_get(
path=f"/projects/{project_json_resp['id']}",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
if project_status["status"] == 3:
is_data_processing_success = True
time.sleep(10)
# Approve training job
train_job_resp = http_post(
path=f"/projects/{project_json_resp['id']}/start_training",
token=HF_TOKEN,
domain=AUTOTRAIN_BACKEND_API,
).json()
st.success("βœ… Data processing and project approval complete - go forth and evaluate!")
else:
# Prod/staging submissions are evaluated in a cron job via the run_evaluation_jobs.py script
print(f"INFO -- AutoTrain job response: {train_json_resp}")
if train_json_resp["success"]:
train_eval_index = {
"train-eval-index": [
{
"config": selected_config,
"task": AUTOTRAIN_TASK_TO_HUB_TASK[selected_task],
"task_id": selected_task,
"splits": {"eval_split": selected_split},
"col_mapping": col_mapping,
}
]
}
selected_metadata = yaml.dump(train_eval_index, sort_keys=False)
dataset_card_url = get_dataset_card_url(selected_dataset)
st.success("βœ… Successfully submitted evaluation job!")
st.markdown(
f"""
Evaluation can take up to 1 hour to complete, so grab a β˜•οΈ or 🍡 while you wait:
* πŸ”” A [Hub pull request](https://huggingface.co/docs/hub/repositories-pull-requests-discussions) with the evaluation results will be opened for each model you selected. Check your email for notifications.
* πŸ“Š Click [here](https://hf.co/spaces/autoevaluate/leaderboards?dataset={selected_dataset}) to view the results from your submission once the Hub pull request is merged.
* πŸ₯± Tired of configuring evaluations? Add the following metadata to the [dataset card]({dataset_card_url}) to enable 1-click evaluations:
""" # noqa
)
st.markdown(
f"""
```yaml
{selected_metadata}
"""
)
print("INFO -- Pushing evaluation job logs to the Hub")
evaluation_log = {}
evaluation_log["project_id"] = project_json_resp["id"]
evaluation_log["autotrain_env"] = (
"staging" if "staging" in AUTOTRAIN_BACKEND_API else "prod"
)
evaluation_log["payload"] = project_payload
evaluation_log["project_creation_response"] = project_json_resp
evaluation_log["dataset_creation_response"] = data_json_resp
evaluation_log["autotrain_job_response"] = train_json_resp
commit_evaluation_log(evaluation_log, hf_access_token=HF_TOKEN)
else:
st.error("πŸ™ˆ Oh no, there was an error submitting your evaluation job!")
else:
st.warning("⚠️ No models left to evaluate! Please select other models and try again.")