model-evaluator / utils.py
lewtun's picture
lewtun HF staff
Refactor
eef70c0
raw
history blame
4.43 kB
from typing import Dict, List, Union
import jsonlines
import requests
from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info
AUTOTRAIN_TASK_TO_HUB_TASK = {
"binary_classification": "text-classification",
"multi_class_classification": "text-classification",
# "multi_label_classification": "text-classification", # Not fully supported in AutoTrain
"entity_extraction": "token-classification",
"extractive_question_answering": "question-answering",
"translation": "translation",
"summarization": "summarization",
# "single_column_regression": 10,
}
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
LOGS_REPO = "evaluation-job-logs"
def get_auth_headers(token: str, prefix: str = "autonlp"):
return {"Authorization": f"{prefix} {token}"}
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.post(
url=domain + path,
json=payload,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print("❌ Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
"""HTTP POST request to `path`, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.get(
url=domain + path,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print(f"❌ Failed to reach {path}, check your internet connection")
response.raise_for_status()
return response
def get_metadata(dataset_name: str) -> Union[Dict, None]:
data = dataset_info(dataset_name)
if data.cardData is not None and "train-eval-index" in data.cardData.keys():
return data.cardData["train-eval-index"]
else:
return None
def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]:
"""
Returns all model IDs that are compatible with the given task and dataset names.
Args:
task (`str`): The task to search for.
dataset_names (`List[str]`): A list of dataset names to search for.
Returns:
A list of model IDs, sorted alphabetically.
"""
# TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain
compatible_models = []
if task == "extractive_question_answering":
dataset_ids.extend(["squad", "squad_v2"])
for dataset_id in dataset_ids:
model_filter = ModelFilter(
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
trained_dataset=dataset_id,
library=["transformers", "pytorch"],
)
compatible_models.extend(HfApi().list_models(filter=model_filter))
return set(sorted([model.modelId for model in compatible_models]))
def get_key(col_mapping, val):
for key, value in col_mapping.items():
if val == value:
return key
return "key doesn't exist"
def format_col_mapping(col_mapping: dict) -> dict:
for k, v in col_mapping["answers"].items():
col_mapping[f"answers.{k}"] = f"answers.{v}"
del col_mapping["answers"]
return col_mapping
def commit_evaluation_log(evaluation_log, hf_access_token=None):
logs_repo_url = f"https://huggingface.co/datasets/autoevaluate/{LOGS_REPO}"
logs_repo = Repository(
local_dir=LOGS_REPO,
clone_from=logs_repo_url,
repo_type="dataset",
private=True,
use_auth_token=hf_access_token,
)
logs_repo.git_pull()
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r:
lines = []
for obj in r:
lines.append(obj)
lines.append(evaluation_log)
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer:
for job in lines:
writer.write(job)
logs_repo.push_to_hub(
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
)
print("INFO -- Pushed evaluation logs to the Hub")