model-evaluator / utils.py
Achitha's picture
Update utils.py
e32484d
raw
history blame
8.38 kB
import inspect
import uuid
from typing import Dict, List, Union
import jsonlines
import requests
import streamlit as st
from evaluate import load
from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics
from tqdm import tqdm
AUTOTRAIN_TASK_TO_HUB_TASK = {
"binary_classification": "text-classification",
"multi_class_classification": "text-classification",
"natural_language_inference": "text-classification",
"entity_extraction": "token-classification",
"extractive_question_answering": "question-answering",
"translation": "translation",
"summarization": "summarization",
"image_binary_classification": "image-classification",
"image_multi_class_classification": "image-classification",
"text_zero_shot_classification": "text-generation",
}
HUB_TASK_TO_AUTOTRAIN_TASK = {v: k for k, v in AUTOTRAIN_TASK_TO_HUB_TASK.items()}
LOGS_REPO = "evaluation-job-logs"
def get_auth_headers(token: str, prefix: str = "Bearer"):
return {"Authorization": f"{prefix} {token}"}
def http_post(path: str, token: str, payload=None, domain: str = None, params=None) -> requests.Response:
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.post(
url=domain + path,
json=payload,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print("❌ Failed to reach AutoNLP API, check your internet connection")
response.raise_for_status()
return response
def http_get(path: str, domain: str, token: str = None, params: dict = None) -> requests.Response:
"""HTTP POST request to `path`, raises UnreachableAPIError if the API cannot be reached"""
try:
response = requests.get(
url=domain + path,
headers=get_auth_headers(token=token),
allow_redirects=True,
params=params,
)
except requests.exceptions.ConnectionError:
print(f"❌ Failed to reach {path}, check your internet connection")
response.raise_for_status()
return response
def get_metadata(dataset_name: str, token: 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) -> Union[Dict, None]:
data = dataset_info(dataset_name, token=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)
if data.cardData is not None and "train-eval-index" in data.cardData.keys():
return data.cardData["train-eval-index"]
else:
return None
def get_compatible_models(task: str, dataset_ids: List[str]) -> List[str]:
"""
Returns all model IDs that are compatible with the given task and dataset names.
Args:
task (`str`): The task to search for.
dataset_names (`List[str]`): A list of dataset names to search for.
Returns:
A list of model IDs, sorted alphabetically.
"""
compatible_models = []
# Allow any summarization model to be used for summarization tasks
# and allow any text-generation model to be used for text_zero_shot_classification
if task in ("summarization", "text_zero_shot_classification"):
model_filter = ModelFilter(
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
library=["transformers", "pytorch"],
)
compatible_models.extend(HfApi().list_models(filter=model_filter))
# Include models trained on SQuAD datasets, since these can be evaluated on
# other SQuAD-like datasets
if task == "extractive_question_answering":
dataset_ids.extend(["squad", "squad_v2"])
# TODO: relax filter on PyTorch models if TensorFlow supported in AutoTrain
for dataset_id in dataset_ids:
model_filter = ModelFilter(
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
trained_dataset=dataset_id,
library=["transformers", "pytorch"],
)
compatible_models.extend(HfApi().list_models(filter=model_filter))
return sorted(set([model.modelId for model in compatible_models]))
def get_key(col_mapping, val):
for key, value in col_mapping.items():
if val == value:
return key
return "key doesn't exist"
def format_col_mapping(col_mapping: dict) -> dict:
for k, v in col_mapping["answers"].items():
col_mapping[f"answers.{k}"] = f"answers.{v}"
del col_mapping["answers"]
return col_mapping
def commit_evaluation_log(evaluation_log, hf_access_token=None):
logs_repo_url = f"https://huggingface.co/datasets/autoevaluate/{LOGS_REPO}"
logs_repo = Repository(
local_dir=LOGS_REPO,
clone_from=logs_repo_url,
repo_type="dataset",
private=True,
use_auth_token=hf_access_token,
)
logs_repo.git_pull()
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl") as r:
lines = []
for obj in r:
lines.append(obj)
lines.append(evaluation_log)
with jsonlines.open(f"{LOGS_REPO}/logs.jsonl", mode="w") as writer:
for job in lines:
writer.write(job)
logs_repo.push_to_hub(
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
)
print("INFO -- Pushed evaluation logs to the Hub")
@st.experimental_memo
def get_supported_metrics():
"""Helper function to get all metrics compatible with evaluation service.
Requires all metric dependencies installed in the same environment, so wait until
https://github.com/huggingface/evaluate/issues/138 is resolved before using this.
"""
metrics = [metric.id for metric in list_metrics()]
supported_metrics = []
for metric in tqdm(metrics):
# TODO: this currently requires all metric dependencies to be installed
# in the same environment. Refactor to avoid needing to actually load
# the metric.
try:
print(f"INFO -- Attempting to load metric: {metric}")
metric_func = load(metric)
except Exception as e:
print(e)
print("WARNING -- Skipping the following metric, which cannot load:", metric)
continue
argspec = inspect.getfullargspec(metric_func.compute)
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
# We require that "references" and "predictions" are arguments
# to the metric function. We also require that the other arguments
# besides "references" and "predictions" have defaults and so do not
# need to be specified explicitly.
defaults = True
for key, value in argspec.kwonlydefaults.items():
if key not in ("references", "predictions"):
if value is None:
defaults = False
break
if defaults:
supported_metrics.append(metric)
return supported_metrics
def get_dataset_card_url(dataset_id: str) -> str:
"""Gets the URL to edit the dataset card for the given dataset ID."""
if "/" in dataset_id:
return f"https://huggingface.co/datasets/{dataset_id}/edit/main/README.md"
else:
return f"https://github.com/huggingface/datasets/edit/master/datasets/{dataset_id}/README.md"
def create_autotrain_project_name(dataset_id: str, dataset_config: str) -> str:
"""Creates an AutoTrain project name for the given dataset ID."""
# Project names cannot have "/", so we need to format community datasets accordingly
dataset_id_formatted = dataset_id.replace("/", "__")
dataset_config_formatted = dataset_config.replace("--", "__")
# Project names need to be unique, so we append a random string to guarantee this while adhering to naming rules
basename = f"eval-{dataset_id_formatted}-{dataset_config_formatted}"
basename = basename[:60] if len(basename) > 60 else basename # Hub naming limitation
return f"{basename}-{str(uuid.uuid4())[:6]}"
def get_config_metadata(config: str, metadata: List[Dict] = None) -> Union[Dict, None]:
"""Gets the dataset card metadata for the given config."""
if metadata is None:
return None
config_metadata = [m for m in metadata if m["config"] == config]
if len(config_metadata) >= 1:
return config_metadata[0]
else:
return None