Spaces:
Runtime error
Runtime error
Merge pull request #23 from huggingface/add-metadata-generator
Browse files- app.py +59 -51
- requirements.txt +0 -2
- utils.py +44 -1
app.py
CHANGED
@@ -1,4 +1,3 @@
|
|
1 |
-
import inspect
|
2 |
import os
|
3 |
import uuid
|
4 |
from pathlib import Path
|
@@ -7,9 +6,7 @@ import pandas as pd
|
|
7 |
import streamlit as st
|
8 |
from datasets import get_dataset_config_names
|
9 |
from dotenv import load_dotenv
|
10 |
-
from
|
11 |
-
from huggingface_hub import list_datasets, list_metrics
|
12 |
-
from tqdm import tqdm
|
13 |
|
14 |
from evaluation import filter_evaluated_models
|
15 |
from utils import (
|
@@ -57,42 +54,53 @@ TASK_TO_DEFAULT_METRICS = {
|
|
57 |
|
58 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
|
98 |
#######
|
@@ -101,12 +109,13 @@ supported_metrics = get_supported_metrics()
|
|
101 |
st.title("Evaluation on the Hub")
|
102 |
st.markdown(
|
103 |
"""
|
104 |
-
Welcome to Hugging Face's automatic model evaluator
|
105 |
-
|
|
|
106 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
107 |
-
across a wide variety of datasets on the
|
108 |
-
configuration below. The results of your
|
109 |
-
[public
|
110 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
111 |
"""
|
112 |
)
|
@@ -363,11 +372,10 @@ with st.expander("Advanced configuration"):
|
|
363 |
st.markdown(html_string, unsafe_allow_html=True)
|
364 |
selected_metrics = st.multiselect(
|
365 |
"(Optional) Select additional metrics",
|
366 |
-
list(set(
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
Check out the [available metrics](https://huggingface.co/metrics) for more details."""
|
371 |
)
|
372 |
|
373 |
with st.form(key="form"):
|
@@ -375,7 +383,7 @@ with st.form(key="form"):
|
|
375 |
selected_models = st.multiselect(
|
376 |
"Select the models you wish to evaluate",
|
377 |
compatible_models,
|
378 |
-
help="""Don't see your model in this list? Add the dataset and task it was trained on to the \
|
379 |
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
380 |
)
|
381 |
print("INFO -- Selected models before filter:", selected_models)
|
|
|
|
|
1 |
import os
|
2 |
import uuid
|
3 |
from pathlib import Path
|
|
|
6 |
import streamlit as st
|
7 |
from datasets import get_dataset_config_names
|
8 |
from dotenv import load_dotenv
|
9 |
+
from huggingface_hub import list_datasets
|
|
|
|
|
10 |
|
11 |
from evaluation import filter_evaluated_models
|
12 |
from utils import (
|
|
|
54 |
|
55 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
56 |
|
57 |
+
# Extracted from utils.get_supported_metrics
|
58 |
+
# Hardcoded for now due to speed / caching constraints
|
59 |
+
SUPPORTED_METRICS = [
|
60 |
+
"accuracy",
|
61 |
+
"bertscore",
|
62 |
+
"bleu",
|
63 |
+
"cer",
|
64 |
+
"chrf",
|
65 |
+
"code_eval",
|
66 |
+
"comet",
|
67 |
+
"competition_math",
|
68 |
+
"coval",
|
69 |
+
"cuad",
|
70 |
+
"exact_match",
|
71 |
+
"f1",
|
72 |
+
"frugalscore",
|
73 |
+
"google_bleu",
|
74 |
+
"mae",
|
75 |
+
"mahalanobis",
|
76 |
+
"matthews_correlation",
|
77 |
+
"mean_iou",
|
78 |
+
"meteor",
|
79 |
+
"mse",
|
80 |
+
"pearsonr",
|
81 |
+
"perplexity",
|
82 |
+
"precision",
|
83 |
+
"recall",
|
84 |
+
"roc_auc",
|
85 |
+
"rouge",
|
86 |
+
"sacrebleu",
|
87 |
+
"sari",
|
88 |
+
"seqeval",
|
89 |
+
"spearmanr",
|
90 |
+
"squad",
|
91 |
+
"squad_v2",
|
92 |
+
"ter",
|
93 |
+
"trec_eval",
|
94 |
+
"wer",
|
95 |
+
"wiki_split",
|
96 |
+
"xnli",
|
97 |
+
"angelina-wang/directional_bias_amplification",
|
98 |
+
"jordyvl/ece",
|
99 |
+
"lvwerra/ai4code",
|
100 |
+
"lvwerra/amex",
|
101 |
+
"lvwerra/test",
|
102 |
+
"lvwerra/test_metric",
|
103 |
+
]
|
104 |
|
105 |
|
106 |
#######
|
|
|
109 |
st.title("Evaluation on the Hub")
|
110 |
st.markdown(
|
111 |
"""
|
112 |
+
Welcome to Hugging Face's automatic model evaluator π!
|
113 |
+
|
114 |
+
This application allows you to evaluate π€ Transformers
|
115 |
[models](https://huggingface.co/models?library=transformers&sort=downloads)
|
116 |
+
across a wide variety of [datasets](https://huggingface.co/datasets) on the
|
117 |
+
Hub. Please select the dataset and configuration below. The results of your
|
118 |
+
evaluation will be displayed on the [public
|
119 |
leaderboard](https://huggingface.co/spaces/autoevaluate/leaderboards).
|
120 |
"""
|
121 |
)
|
|
|
372 |
st.markdown(html_string, unsafe_allow_html=True)
|
373 |
selected_metrics = st.multiselect(
|
374 |
"(Optional) Select additional metrics",
|
375 |
+
sorted(list(set(SUPPORTED_METRICS) - set(TASK_TO_DEFAULT_METRICS[selected_task]))),
|
376 |
+
help="""User-selected metrics will be computed with their default arguments. \
|
377 |
+
For example, `f1` will report results for binary labels. \
|
378 |
+
Check out the [available metrics](https://huggingface.co/metrics) for more details.""",
|
|
|
379 |
)
|
380 |
|
381 |
with st.form(key="form"):
|
|
|
383 |
selected_models = st.multiselect(
|
384 |
"Select the models you wish to evaluate",
|
385 |
compatible_models,
|
386 |
+
help="""Don't see your favourite model in this list? Add the dataset and task it was trained on to the \
|
387 |
[model card metadata.](https://huggingface.co/docs/hub/models-cards#model-card-metadata)""",
|
388 |
)
|
389 |
print("INFO -- Selected models before filter:", selected_models)
|
requirements.txt
CHANGED
@@ -7,7 +7,5 @@ jsonlines
|
|
7 |
# Dataset specific deps
|
8 |
py7zr<0.19
|
9 |
openpyxl<3.1
|
10 |
-
# Metric specific deps
|
11 |
-
scikit-learn<1.2
|
12 |
# Dirty bug from Google
|
13 |
protobuf<=3.20.1
|
|
|
7 |
# Dataset specific deps
|
8 |
py7zr<0.19
|
9 |
openpyxl<3.1
|
|
|
|
|
10 |
# Dirty bug from Google
|
11 |
protobuf<=3.20.1
|
utils.py
CHANGED
@@ -1,8 +1,12 @@
|
|
|
|
1 |
from typing import Dict, List, Union
|
2 |
|
3 |
import jsonlines
|
4 |
import requests
|
5 |
-
|
|
|
|
|
|
|
6 |
|
7 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
8 |
"binary_classification": "text-classification",
|
@@ -128,3 +132,42 @@ def commit_evaluation_log(evaluation_log, hf_access_token=None):
|
|
128 |
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
|
129 |
)
|
130 |
print("INFO -- Pushed evaluation logs to the Hub")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
from typing import Dict, List, Union
|
3 |
|
4 |
import jsonlines
|
5 |
import requests
|
6 |
+
import streamlit as st
|
7 |
+
from evaluate import load
|
8 |
+
from huggingface_hub import HfApi, ModelFilter, Repository, dataset_info, list_metrics
|
9 |
+
from tqdm import tqdm
|
10 |
|
11 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
12 |
"binary_classification": "text-classification",
|
|
|
132 |
commit_message=f"Evaluation submitted with project name {evaluation_log['payload']['proj_name']}"
|
133 |
)
|
134 |
print("INFO -- Pushed evaluation logs to the Hub")
|
135 |
+
|
136 |
+
|
137 |
+
@st.experimental_memo
|
138 |
+
def get_supported_metrics():
|
139 |
+
"""Helper function to get all metrics compatible with evaluation service.
|
140 |
+
|
141 |
+
Requires all metric dependencies installed in the same environment, so wait until
|
142 |
+
https://github.com/huggingface/evaluate/issues/138 is resolved before using this.
|
143 |
+
"""
|
144 |
+
metrics = [metric.id for metric in list_metrics()]
|
145 |
+
supported_metrics = []
|
146 |
+
for metric in tqdm(metrics):
|
147 |
+
# TODO: this currently requires all metric dependencies to be installed
|
148 |
+
# in the same environment. Refactor to avoid needing to actually load
|
149 |
+
# the metric.
|
150 |
+
try:
|
151 |
+
print(f"INFO -- Attempting to load metric: {metric}")
|
152 |
+
metric_func = load(metric)
|
153 |
+
except Exception as e:
|
154 |
+
print(e)
|
155 |
+
print("WARNING -- Skipping the following metric, which cannot load:", metric)
|
156 |
+
continue
|
157 |
+
|
158 |
+
argspec = inspect.getfullargspec(metric_func.compute)
|
159 |
+
if "references" in argspec.kwonlyargs and "predictions" in argspec.kwonlyargs:
|
160 |
+
# We require that "references" and "predictions" are arguments
|
161 |
+
# to the metric function. We also require that the other arguments
|
162 |
+
# besides "references" and "predictions" have defaults and so do not
|
163 |
+
# need to be specified explicitly.
|
164 |
+
defaults = True
|
165 |
+
for key, value in argspec.kwonlydefaults.items():
|
166 |
+
if key not in ("references", "predictions"):
|
167 |
+
if value is None:
|
168 |
+
defaults = False
|
169 |
+
break
|
170 |
+
|
171 |
+
if defaults:
|
172 |
+
supported_metrics.append(metric)
|
173 |
+
return supported_metrics
|