Spaces:
Runtime error
Runtime error
Merge pull request #10 from huggingface/add-caching
Browse files- .github/workflows/quality.yml +29 -0
- Makefile +8 -0
- app.py +90 -61
- evaluation.py +46 -0
- pyproject.toml +2 -0
- utils.py +13 -4
.github/workflows/quality.yml
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Code quality
|
2 |
+
|
3 |
+
on:
|
4 |
+
push:
|
5 |
+
branches:
|
6 |
+
- main
|
7 |
+
pull_request:
|
8 |
+
branches:
|
9 |
+
- main
|
10 |
+
|
11 |
+
jobs:
|
12 |
+
|
13 |
+
check_code_quality:
|
14 |
+
name: Check code quality
|
15 |
+
runs-on: ubuntu-latest
|
16 |
+
steps:
|
17 |
+
- name: Checkout code
|
18 |
+
uses: actions/checkout@v2
|
19 |
+
- name: Setup Python environment
|
20 |
+
uses: actions/setup-python@v2
|
21 |
+
with:
|
22 |
+
python-version: 3.9
|
23 |
+
- name: Install dependencies
|
24 |
+
run: |
|
25 |
+
python -m pip install --upgrade pip
|
26 |
+
python -m pip install black isort flake8
|
27 |
+
- name: Code quality
|
28 |
+
run: |
|
29 |
+
make quality
|
Makefile
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
style:
|
2 |
+
python -m black --line-length 119 --target-version py39 .
|
3 |
+
python -m isort .
|
4 |
+
|
5 |
+
quality:
|
6 |
+
python -m black --check --line-length 119 --target-version py39 .
|
7 |
+
python -m isort --check-only .
|
8 |
+
python -m flake8 --max-line-length 119
|
app.py
CHANGED
@@ -8,8 +8,8 @@ from datasets import get_dataset_config_names
|
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
10 |
|
11 |
-
from
|
12 |
-
|
13 |
|
14 |
if Path(".env").is_file():
|
15 |
load_dotenv(".env")
|
@@ -33,9 +33,9 @@ TASK_TO_ID = {
|
|
33 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
34 |
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
st.title("Evaluation as a Service")
|
40 |
st.markdown(
|
41 |
"""
|
@@ -64,18 +64,22 @@ if metadata is None:
|
|
64 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
65 |
|
66 |
with st.expander("Advanced configuration"):
|
67 |
-
|
68 |
selected_task = st.selectbox(
|
69 |
"Select a task",
|
70 |
SUPPORTED_TASKS,
|
71 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
72 |
)
|
73 |
-
|
74 |
configs = get_dataset_config_names(selected_dataset)
|
75 |
selected_config = st.selectbox("Select a config", configs)
|
76 |
|
77 |
-
|
78 |
-
splits_resp = http_get(
|
|
|
|
|
|
|
|
|
79 |
if splits_resp.status_code == 200:
|
80 |
split_names = []
|
81 |
all_splits = splits_resp.json()
|
@@ -89,11 +93,15 @@ with st.expander("Advanced configuration"):
|
|
89 |
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
|
90 |
)
|
91 |
|
92 |
-
|
93 |
rows_resp = http_get(
|
94 |
path="/rows",
|
95 |
domain=DATASETS_PREVIEW_API,
|
96 |
-
params={
|
|
|
|
|
|
|
|
|
97 |
).json()
|
98 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
99 |
|
@@ -135,7 +143,7 @@ with st.expander("Advanced configuration"):
|
|
135 |
st.markdown("`tags` column")
|
136 |
with col2:
|
137 |
tokens_col = st.selectbox(
|
138 |
-
"This column should contain the
|
139 |
col_names,
|
140 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
141 |
)
|
@@ -244,65 +252,86 @@ with st.form(key="form"):
|
|
244 |
|
245 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
246 |
print("Selected models:", selected_models)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
submit_button = st.form_submit_button("Make submission")
|
248 |
|
249 |
if submit_button:
|
250 |
-
|
251 |
-
|
252 |
-
"username": AUTOTRAIN_USERNAME,
|
253 |
-
"proj_name": f"my-eval-project-{project_id}",
|
254 |
-
"task": TASK_TO_ID[selected_task],
|
255 |
-
"config": {
|
256 |
-
"language": "en",
|
257 |
-
"max_models": 5,
|
258 |
-
"instance": {
|
259 |
-
"provider": "aws",
|
260 |
-
"instance_type": "ml.g4dn.4xlarge",
|
261 |
-
"max_runtime_seconds": 172800,
|
262 |
-
"num_instances": 1,
|
263 |
-
"disk_size_gb": 150,
|
264 |
-
},
|
265 |
-
"evaluation": {
|
266 |
-
"metrics": [],
|
267 |
-
"models": selected_models,
|
268 |
-
},
|
269 |
-
},
|
270 |
-
}
|
271 |
-
print(f"Payload: {payload}")
|
272 |
-
project_json_resp = http_post(
|
273 |
-
path="/projects/create", payload=payload, token=HF_TOKEN, domain=AUTOTRAIN_BACKEND_API
|
274 |
-
).json()
|
275 |
-
print(project_json_resp)
|
276 |
-
|
277 |
-
if project_json_resp["created"]:
|
278 |
payload = {
|
279 |
-
"
|
280 |
-
"
|
281 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
282 |
}
|
283 |
-
|
284 |
-
|
|
|
285 |
payload=payload,
|
286 |
token=HF_TOKEN,
|
287 |
domain=AUTOTRAIN_BACKEND_API,
|
288 |
-
params={"type": "dataset", "config_name": selected_config, "split_name": selected_split},
|
289 |
).json()
|
290 |
-
print(
|
291 |
-
|
292 |
-
|
293 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
token=HF_TOKEN,
|
295 |
domain=AUTOTRAIN_BACKEND_API,
|
|
|
|
|
|
|
|
|
|
|
296 |
).json()
|
297 |
-
print(
|
298 |
-
if
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
|
|
|
|
|
|
|
8 |
from dotenv import load_dotenv
|
9 |
from huggingface_hub import list_datasets
|
10 |
|
11 |
+
from evaluation import filter_evaluated_models
|
12 |
+
from utils import get_compatible_models, get_key, get_metadata, http_get, http_post
|
13 |
|
14 |
if Path(".env").is_file():
|
15 |
load_dotenv(".env")
|
|
|
33 |
SUPPORTED_TASKS = list(TASK_TO_ID.keys())
|
34 |
|
35 |
|
36 |
+
#######
|
37 |
+
# APP #
|
38 |
+
#######
|
39 |
st.title("Evaluation as a Service")
|
40 |
st.markdown(
|
41 |
"""
|
|
|
64 |
st.warning("No evaluation metadata found. Please configure the evaluation job below.")
|
65 |
|
66 |
with st.expander("Advanced configuration"):
|
67 |
+
# Select task
|
68 |
selected_task = st.selectbox(
|
69 |
"Select a task",
|
70 |
SUPPORTED_TASKS,
|
71 |
index=SUPPORTED_TASKS.index(metadata[0]["task_id"]) if metadata is not None else 0,
|
72 |
)
|
73 |
+
# Select config
|
74 |
configs = get_dataset_config_names(selected_dataset)
|
75 |
selected_config = st.selectbox("Select a config", configs)
|
76 |
|
77 |
+
# Select splits
|
78 |
+
splits_resp = http_get(
|
79 |
+
path="/splits",
|
80 |
+
domain=DATASETS_PREVIEW_API,
|
81 |
+
params={"dataset": selected_dataset},
|
82 |
+
)
|
83 |
if splits_resp.status_code == 200:
|
84 |
split_names = []
|
85 |
all_splits = splits_resp.json()
|
|
|
93 |
index=split_names.index(metadata[0]["splits"]["eval_split"]) if metadata is not None else 0,
|
94 |
)
|
95 |
|
96 |
+
# Select columns
|
97 |
rows_resp = http_get(
|
98 |
path="/rows",
|
99 |
domain=DATASETS_PREVIEW_API,
|
100 |
+
params={
|
101 |
+
"dataset": selected_dataset,
|
102 |
+
"config": selected_config,
|
103 |
+
"split": selected_split,
|
104 |
+
},
|
105 |
).json()
|
106 |
col_names = list(pd.json_normalize(rows_resp["rows"][0]["row"]).columns)
|
107 |
|
|
|
143 |
st.markdown("`tags` column")
|
144 |
with col2:
|
145 |
tokens_col = st.selectbox(
|
146 |
+
"This column should contain the array of tokens",
|
147 |
col_names,
|
148 |
index=col_names.index(get_key(metadata[0]["col_mapping"], "tokens")) if metadata is not None else 0,
|
149 |
)
|
|
|
252 |
|
253 |
selected_models = st.multiselect("Select the models you wish to evaluate", compatible_models)
|
254 |
print("Selected models:", selected_models)
|
255 |
+
|
256 |
+
selected_models = filter_evaluated_models(
|
257 |
+
selected_models,
|
258 |
+
selected_task,
|
259 |
+
selected_dataset,
|
260 |
+
selected_config,
|
261 |
+
selected_split,
|
262 |
+
)
|
263 |
+
print("Selected models:", selected_models)
|
264 |
+
|
265 |
submit_button = st.form_submit_button("Make submission")
|
266 |
|
267 |
if submit_button:
|
268 |
+
if len(selected_models) > 0:
|
269 |
+
project_id = str(uuid.uuid4())[:3]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
270 |
payload = {
|
271 |
+
"username": AUTOTRAIN_USERNAME,
|
272 |
+
"proj_name": f"my-eval-project-{project_id}",
|
273 |
+
"task": TASK_TO_ID[selected_task],
|
274 |
+
"config": {
|
275 |
+
"language": "en",
|
276 |
+
"max_models": 5,
|
277 |
+
"instance": {
|
278 |
+
"provider": "aws",
|
279 |
+
"instance_type": "ml.g4dn.4xlarge",
|
280 |
+
"max_runtime_seconds": 172800,
|
281 |
+
"num_instances": 1,
|
282 |
+
"disk_size_gb": 150,
|
283 |
+
},
|
284 |
+
"evaluation": {
|
285 |
+
"metrics": [],
|
286 |
+
"models": selected_models,
|
287 |
+
},
|
288 |
+
},
|
289 |
}
|
290 |
+
print(f"Payload: {payload}")
|
291 |
+
project_json_resp = http_post(
|
292 |
+
path="/projects/create",
|
293 |
payload=payload,
|
294 |
token=HF_TOKEN,
|
295 |
domain=AUTOTRAIN_BACKEND_API,
|
|
|
296 |
).json()
|
297 |
+
print(project_json_resp)
|
298 |
+
|
299 |
+
if project_json_resp["created"]:
|
300 |
+
payload = {
|
301 |
+
"split": 4, # use "auto" split choice in AutoTrain
|
302 |
+
"col_mapping": col_mapping,
|
303 |
+
"load_config": {"max_size_bytes": 0, "shuffle": False},
|
304 |
+
}
|
305 |
+
data_json_resp = http_post(
|
306 |
+
path=f"/projects/{project_json_resp['id']}/data/{selected_dataset}",
|
307 |
+
payload=payload,
|
308 |
token=HF_TOKEN,
|
309 |
domain=AUTOTRAIN_BACKEND_API,
|
310 |
+
params={
|
311 |
+
"type": "dataset",
|
312 |
+
"config_name": selected_config,
|
313 |
+
"split_name": selected_split,
|
314 |
+
},
|
315 |
).json()
|
316 |
+
print(data_json_resp)
|
317 |
+
if data_json_resp["download_status"] == 1:
|
318 |
+
train_json_resp = http_get(
|
319 |
+
path=f"/projects/{project_json_resp['id']}/data/start_process",
|
320 |
+
token=HF_TOKEN,
|
321 |
+
domain=AUTOTRAIN_BACKEND_API,
|
322 |
+
).json()
|
323 |
+
print(train_json_resp)
|
324 |
+
if train_json_resp["success"]:
|
325 |
+
st.success(f"β
Successfully submitted evaluation job with project ID {project_id}")
|
326 |
+
st.markdown(
|
327 |
+
"""
|
328 |
+
Evaluation takes appoximately 1 hour to complete, so grab a β or π΅ while you wait:
|
329 |
|
330 |
+
* π Click [here](https://huggingface.co/spaces/autoevaluate/leaderboards) to view the \
|
331 |
+
results from your submission
|
332 |
+
"""
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
st.error("π Oh noes, there was an error submitting your evaluation job!")
|
336 |
+
else:
|
337 |
+
st.warning("β οΈ No models were selected for evaluation!")
|
evaluation.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
|
3 |
+
import streamlit as st
|
4 |
+
from huggingface_hub import DatasetFilter, HfApi
|
5 |
+
from huggingface_hub.hf_api import DatasetInfo
|
6 |
+
|
7 |
+
|
8 |
+
@dataclass(frozen=True, eq=True)
|
9 |
+
class EvaluationInfo:
|
10 |
+
task: str
|
11 |
+
model: str
|
12 |
+
dataset_name: str
|
13 |
+
dataset_config: str
|
14 |
+
dataset_split: str
|
15 |
+
|
16 |
+
|
17 |
+
def compute_evaluation_id(dataset_info: DatasetInfo) -> int:
|
18 |
+
metadata = dataset_info.cardData["eval_info"]
|
19 |
+
metadata.pop("col_mapping", None)
|
20 |
+
evaluation_info = EvaluationInfo(**metadata)
|
21 |
+
return hash(evaluation_info)
|
22 |
+
|
23 |
+
|
24 |
+
def get_evaluation_ids():
|
25 |
+
filt = DatasetFilter(author="autoevaluate")
|
26 |
+
evaluation_datasets = HfApi().list_datasets(filter=filt, full=True)
|
27 |
+
return [compute_evaluation_id(dset) for dset in evaluation_datasets]
|
28 |
+
|
29 |
+
|
30 |
+
def filter_evaluated_models(models, task, dataset_name, dataset_config, dataset_split):
|
31 |
+
evaluation_ids = get_evaluation_ids()
|
32 |
+
|
33 |
+
for idx, model in enumerate(models):
|
34 |
+
evaluation_info = EvaluationInfo(
|
35 |
+
task=task,
|
36 |
+
model=model,
|
37 |
+
dataset_name=dataset_name,
|
38 |
+
dataset_config=dataset_config,
|
39 |
+
dataset_split=dataset_split,
|
40 |
+
)
|
41 |
+
candidate_id = hash(evaluation_info)
|
42 |
+
if candidate_id in evaluation_ids:
|
43 |
+
st.info(f"Model {model} has already been evaluated on this configuration. Skipping evaluation...")
|
44 |
+
models.pop(idx)
|
45 |
+
|
46 |
+
return models
|
pyproject.toml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
[tool.isort]
|
2 |
+
profile = "black"
|
utils.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
from typing import Dict, Union
|
2 |
|
3 |
import requests
|
4 |
-
from huggingface_hub import
|
5 |
|
6 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
7 |
"binary_classification": "text-classification",
|
@@ -27,7 +27,11 @@ def http_post(path: str, token: str, payload=None, domain: str = None, params=No
|
|
27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
28 |
try:
|
29 |
response = requests.post(
|
30 |
-
url=domain + path,
|
|
|
|
|
|
|
|
|
31 |
)
|
32 |
except requests.exceptions.ConnectionError:
|
33 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
@@ -39,7 +43,10 @@ def http_get(path: str, domain: str, token: str = None, params: dict = None) ->
|
|
39 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
40 |
try:
|
41 |
response = requests.get(
|
42 |
-
url=domain + path,
|
|
|
|
|
|
|
43 |
)
|
44 |
except requests.exceptions.ConnectionError:
|
45 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
@@ -58,7 +65,9 @@ def get_metadata(dataset_name: str) -> Union[Dict, None]:
|
|
58 |
def get_compatible_models(task, dataset_name):
|
59 |
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
60 |
filt = ModelFilter(
|
61 |
-
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
|
|
|
|
62 |
)
|
63 |
compatible_models = api.list_models(filter=filt)
|
64 |
return [model.modelId for model in compatible_models]
|
|
|
1 |
from typing import Dict, Union
|
2 |
|
3 |
import requests
|
4 |
+
from huggingface_hub import HfApi, ModelFilter
|
5 |
|
6 |
AUTOTRAIN_TASK_TO_HUB_TASK = {
|
7 |
"binary_classification": "text-classification",
|
|
|
27 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
28 |
try:
|
29 |
response = requests.post(
|
30 |
+
url=domain + path,
|
31 |
+
json=payload,
|
32 |
+
headers=get_auth_headers(token=token),
|
33 |
+
allow_redirects=True,
|
34 |
+
params=params,
|
35 |
)
|
36 |
except requests.exceptions.ConnectionError:
|
37 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
43 |
"""HTTP POST request to the AutoNLP API, raises UnreachableAPIError if the API cannot be reached"""
|
44 |
try:
|
45 |
response = requests.get(
|
46 |
+
url=domain + path,
|
47 |
+
headers=get_auth_headers(token=token),
|
48 |
+
allow_redirects=True,
|
49 |
+
params=params,
|
50 |
)
|
51 |
except requests.exceptions.ConnectionError:
|
52 |
print("β Failed to reach AutoNLP API, check your internet connection")
|
|
|
65 |
def get_compatible_models(task, dataset_name):
|
66 |
# TODO: relax filter on PyTorch models once supported in AutoTrain
|
67 |
filt = ModelFilter(
|
68 |
+
task=AUTOTRAIN_TASK_TO_HUB_TASK[task],
|
69 |
+
trained_dataset=dataset_name,
|
70 |
+
library=["transformers", "pytorch"],
|
71 |
)
|
72 |
compatible_models = api.list_models(filter=filt)
|
73 |
return [model.modelId for model in compatible_models]
|