File size: 44,574 Bytes
c85d0ce
0f09e67
5ed81fc
0f09e67
5ed81fc
 
0f09e67
c85d0ce
5ed81fc
c85d0ce
5ed81fc
0f09e67
debfe4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
0f09e67
debfe4b
c85d0ce
debfe4b
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
debfe4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
 
debfe4b
 
 
 
 
c85d0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debfe4b
 
 
 
c85d0ce
 
debfe4b
c85d0ce
 
 
debfe4b
c85d0ce
debfe4b
c85d0ce
 
 
 
 
 
0f09e67
c85d0ce
 
 
5ed81fc
c85d0ce
 
 
debfe4b
 
 
 
 
 
 
 
c85d0ce
0f09e67
c85d0ce
 
 
 
debfe4b
c85d0ce
 
debfe4b
 
 
 
c85d0ce
debfe4b
c85d0ce
 
debfe4b
c85d0ce
debfe4b
c85d0ce
 
 
debfe4b
c85d0ce
 
 
 
 
debfe4b
c85d0ce
 
 
debfe4b
c85d0ce
 
debfe4b
c85d0ce
 
 
debfe4b
c85d0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debfe4b
c85d0ce
 
 
 
 
 
 
 
debfe4b
c85d0ce
 
 
 
 
 
 
 
 
 
debfe4b
c85d0ce
debfe4b
 
 
 
c85d0ce
 
 
 
 
 
 
debfe4b
 
c85d0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debfe4b
c85d0ce
 
 
 
debfe4b
c85d0ce
debfe4b
c85d0ce
debfe4b
 
 
 
c85d0ce
debfe4b
 
c85d0ce
 
 
debfe4b
 
 
 
 
 
 
 
 
 
 
 
c85d0ce
 
debfe4b
 
 
c85d0ce
 
 
 
 
 
 
 
 
 
 
 
debfe4b
c85d0ce
 
debfe4b
c85d0ce
 
debfe4b
c85d0ce
 
0f09e67
c85d0ce
 
 
0f09e67
c85d0ce
 
 
 
 
 
 
 
 
 
 
5ed81fc
c85d0ce
 
debfe4b
c85d0ce
 
 
 
debfe4b
5ed81fc
0f09e67
c85d0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
debfe4b
 
 
 
 
 
 
 
c85d0ce
 
 
 
 
 
 
 
 
 
debfe4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379bb4d
debfe4b
c85d0ce
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
import os
import gc
import cv2
import numpy as np
import gradio as gr
import torch
import traceback
from facexlib.utils.misc import download_from_url
from realesrgan.utils import RealESRGANer


# Define URLs and their corresponding local storage paths
face_models = {
    "GFPGANv1.4.pth"      : ["https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth",
                            "https://github.com/TencentARC/GFPGAN/", 
"""GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior.
GFPGAN aims at developing a Practical Algorithm for Real-world Face Restoration.
It leverages rich and diverse priors encapsulated in a pretrained face GAN (e.g., StyleGAN2) for blind face restoration."""],

    "RestoreFormer++.ckpt": ["https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer++.ckpt",
                            "https://github.com/wzhouxiff/RestoreFormerPlusPlus", 
"""RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs.
RestoreFormer++ is an extension of RestoreFormer. It proposes to restore a degraded face image with both fidelity and \
realness by using the powerful fully-spacial attention mechanisms to model the abundant contextual information in the face and \
its interplay with reconstruction-oriented high-quality priors."""],

    "CodeFormer.pth"      : ["https://github.com/sczhou/CodeFormer/releases/download/v0.1.0/codeformer.pth",
                            "https://github.com/sczhou/CodeFormer", 
"""CodeFormer: Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022).
CodeFormer is a Transformer-based model designed to tackle the challenging problem of blind face restoration, where inputs are often severely degraded.
By framing face restoration as a code prediction task, this approach ensures both improved mapping from degraded inputs to outputs and the generation of visually rich, high-quality faces.
"""],

    "GPEN-BFR-512.pth"    : ["https://huggingface.co/akhaliq/GPEN-BFR-512/resolve/main/GPEN-BFR-512.pth",
                            "https://github.com/yangxy/GPEN", 
"""GPEN: GAN Prior Embedded Network for Blind Face Restoration in the Wild.
GPEN addresses blind face restoration (BFR) by embedding a GAN into a U-shaped DNN, combining GAN’s ability to generate high-quality images with DNN’s feature extraction.
This design reconstructs global structure, fine details, and backgrounds from degraded inputs.
Simple yet effective, GPEN outperforms state-of-the-art methods, delivering realistic results even for severely degraded images."""],

    "GPEN-BFR-1024.pt"    : ["https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/resolve/master/pytorch_model.pt",
                            "https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/files", 
"""The same as GPEN but for 1024 resolution."""],

    "GPEN-BFR-2048.pt"    : ["https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/resolve/master/pytorch_model-2048.pt",
                            "https://www.modelscope.cn/models/iic/cv_gpen_image-portrait-enhancement-hires/files", 
"""The same as GPEN but for 2048 resolution."""],

    # legacy model
    "GFPGANv1.3.pth"    : ["https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth",
                          "https://github.com/TencentARC/GFPGAN/", "The same as GFPGAN but legacy model"],
    "GFPGANv1.2.pth"    : ["https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth",
                          "https://github.com/TencentARC/GFPGAN/", "The same as GFPGAN but legacy model"],
    "RestoreFormer.ckpt": ["https://github.com/wzhouxiff/RestoreFormerPlusPlus/releases/download/v1.0.0/RestoreFormer.ckpt",
                          "https://github.com/wzhouxiff/RestoreFormerPlusPlus", "The same as RestoreFormer++ but legacy model"],
}
upscale_models = {
    # SRVGGNet
    "realesr-general-x4v3.pth": ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth",
                                "https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.3.0", 
"""add realesr-general-x4v3 and realesr-general-wdn-x4v3. They are very tiny models for general scenes, and they may more robust. But as they are tiny models, their performance may be limited."""],

    "realesr-animevideov3.pth": ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth",
                                "https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.2.5.0", 
"""update the RealESRGAN AnimeVideo-v3 model, which can achieve better results with a faster inference speed."""],

    # RRDBNet
    "RealESRGAN_x4plus_anime_6B.pth": ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth",
                                      "https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.2.2.4", 
"""We add RealESRGAN_x4plus_anime_6B.pth, which is optimized for anime images with much smaller model size. More details and comparisons with waifu2x are in anime_model.md"""],

    "RealESRGAN_x2plus.pth"         : ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth",
                                      "https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.2.1", 
"""Add RealESRGAN_x2plus.pth model"""],

    "RealESRNet_x4plus.pth"         : ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth",
                                      "https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.1.1", 
"""This release is mainly for storing pre-trained models and executable files."""],

    "RealESRGAN_x4plus.pth"         : ["https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth",
                                      "https://github.com/xinntao/Real-ESRGAN/releases/tag/v0.1.0", 
"""This release is mainly for storing pre-trained models and executable files."""],

    # ESRGAN(oldRRDB)
    "4x-AnimeSharp.pth": ["https://huggingface.co/utnah/esrgan/resolve/main/4x-AnimeSharp.pth?download=true",
                         "https://openmodeldb.info/models/4x-AnimeSharp", 
"""Interpolation between 4x-UltraSharp and 4x-TextSharp-v0.5. Works amazingly on anime. It also upscales text, but it's far better with anime content."""],

    "4x_IllustrationJaNai_V1_ESRGAN_135k.pth": ["https://drive.google.com/uc?export=download&confirm=1&id=1qpioSqBkB_IkSBhEAewSSNFt6qgkBimP",
                                               "https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2", 
"""Purpose: Illustrations, digital art, manga covers
Model for color images including manga covers and color illustrations, digital art, visual novel art, artbooks, and more. 
DAT2 version is the highest quality version but also the slowest. See the ESRGAN version for faster performance."""],

    # DATNet
    "4xNomos8kDAT.pth"                     : ["https://github.com/Phhofm/models/releases/download/4xNomos8kDAT/4xNomos8kDAT.pth",
                                             "https://openmodeldb.info/models/4x-Nomos8kDAT", 
"""A 4x photo upscaler with otf jpg compression, blur and resize, trained on musl's Nomos8k_sfw dataset for realisic sr, this time based on the DAT arch, as a finetune on the official 4x DAT model."""],

    "4x-DWTP-DS-dat2-v3.pth"               : ["https://objectstorage.us-phoenix-1.oraclecloud.com/n/ax6ygfvpvzka/b/open-modeldb-files/o/4x-DWTP-DS-dat2-v3.pth",
                                             "https://openmodeldb.info/models/4x-DWTP-DS-dat2-v3", 
"""DAT descreenton model, designed to reduce discrepancies on tiles due to too much loss of the first version, while getting rid of the removal of paper texture"""],

    "4xBHI_dat2_real.pth"                  : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_real/4xBHI_dat2_real.pth",
                                             "https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_real", 
"""Purpose: 4x upscaling images. Handles realistic noise, some realistic blur, and webp and jpg (re)compression.
Description: 4x dat2 upscaling model for web and realistic images. It handles realistic noise, some realistic blur, and webp and jpg (re)compression. Trained on my BHI dataset (390'035 training tiles) with degraded LR subset."""],

    "4xBHI_dat2_otf.pth"                   : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_otf/4xBHI_dat2_otf.pth",
                                             "https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_otf", 
"""Purpose: 4x upscaling images, handles noise and jpg compression
Description: 4x dat2 upscaling model, trained with the real-esrgan otf pipeline on my bhi dataset. Handles noise and compression."""],

    "4xBHI_dat2_multiblur.pth"             : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_multiblurjpg/4xBHI_dat2_multiblur.pth",
                                             "https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_multiblurjpg", 
"""Purpose: 4x upscaling images, handles jpg compression
Description: 4x dat2 upscaling model, trained with down_up,linear, cubic_mitchell, lanczos, gauss and box scaling algos, some average, gaussian and anisotropic blurs and jpg compression. Trained on my BHI sisr dataset."""],

    "4xBHI_dat2_multiblurjpg.pth"          : ["https://github.com/Phhofm/models/releases/download/4xBHI_dat2_multiblurjpg/4xBHI_dat2_multiblurjpg.pth",
                                             "https://github.com/Phhofm/models/releases/tag/4xBHI_dat2_multiblurjpg", 
"""Purpose: 4x upscaling images, handles jpg compression
Description: 4x dat2 upscaling model, trained with down_up,linear, cubic_mitchell, lanczos, gauss and box scaling algos, some average, gaussian and anisotropic blurs and jpg compression. Trained on my BHI sisr dataset."""],

    "4x_IllustrationJaNai_V1_DAT2_190k.pth": ["https://drive.google.com/uc?export=download&confirm=1&id=1qpioSqBkB_IkSBhEAewSSNFt6qgkBimP",
                                             "https://openmodeldb.info/models/4x-IllustrationJaNai-V1-DAT2", 
"""Purpose: Illustrations, digital art, manga covers
Model for color images including manga covers and color illustrations, digital art, visual novel art, artbooks, and more. 
DAT2 version is the highest quality version but also the slowest. See the ESRGAN version for faster performance."""],

    # HAT
    "4xNomos8kSCHAT-L.pth"  : ["https://github.com/Phhofm/models/releases/download/4xNomos8kSCHAT/4xNomos8kSCHAT-L.pth",
                              "https://openmodeldb.info/models/4x-Nomos8kSCHAT-L", 
"""4x photo upscaler with otf jpg compression and blur, trained on musl's Nomos8k_sfw dataset for realisic sr. Since this is a big model, upscaling might take a while."""],

    "4xNomos8kSCHAT-S.pth"  : ["https://github.com/Phhofm/models/releases/download/4xNomos8kSCHAT/4xNomos8kSCHAT-S.pth",
                              "https://openmodeldb.info/models/4x-Nomos8kSCHAT-S", 
"""4x photo upscaler with otf jpg compression and blur, trained on musl's Nomos8k_sfw dataset for realisic sr. HAT-S version/model."""],

    "4xNomos8kHAT-L_otf.pth": ["https://github.com/Phhofm/models/releases/download/4xNomos8kHAT-L_otf/4xNomos8kHAT-L_otf.pth",
                              "https://openmodeldb.info/models/4x-Nomos8kHAT-L-otf", 
"""4x photo upscaler trained with otf"""],

    # RealPLKSR_dysample
    "4xHFA2k_ludvae_realplksr_dysample.pth": ["https://github.com/Phhofm/models/releases/download/4xHFA2k_ludvae_realplksr_dysample/4xHFA2k_ludvae_realplksr_dysample.pth",
                                             "https://openmodeldb.info/models/4x-HFA2k-ludvae-realplksr-dysample", 
"""A Dysample RealPLKSR 4x upscaling model for anime single-image resolution."""],

    "4xArtFaces_realplksr_dysample.pth"    : ["https://github.com/Phhofm/models/releases/download/4xArtFaces_realplksr_dysample/4xArtFaces_realplksr_dysample.pth",
                                             "https://openmodeldb.info/models/4x-ArtFaces-realplksr-dysample", 
"""A Dysample RealPLKSR 4x upscaling model for art / painted faces."""],

    "4x-PBRify_RPLKSRd_V3.pth"             : ["https://github.com/Kim2091/Kim2091-Models/releases/download/4x-PBRify_RPLKSRd_V3/4x-PBRify_RPLKSRd_V3.pth", "https://openmodeldb.info/models/4x-PBRify-RPLKSRd-V3", 
"""This model is roughly 8x faster than the current DAT2 model, while being higher quality. It produces far more natural detail, resolves lines and edges more smoothly, and cleans up compression artifacts better."""],

    "4xNomos2_realplksr_dysample.pth"      : ["https://github.com/Phhofm/models/releases/download/4xNomos2_realplksr_dysample/4xNomos2_realplksr_dysample.pth",
                                             "https://openmodeldb.info/models/4x-Nomos2-realplksr-dysample", 
"""Description: A Dysample RealPLKSR 4x upscaling model that was trained with / handles jpg compression down to 70 on the Nomosv2 dataset, preserves DoF.
This model affects / saturate colors, which can be counteracted a bit by using wavelet color fix, as used in these examples."""],

    # RealPLKSR
    "2x-AnimeSharpV2_RPLKSR_Sharp.pth": ["https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_RPLKSR_Sharp.pth",
                                        "https://openmodeldb.info/models/2x-AnimeSharpV2-RPLKSR-Sharp", 
"""Kim2091: This is my first anime model in years. Hopefully you guys can find a good use-case for it.
RealPLKSR (Higher quality, slower) Sharp: For heavily degraded sources. Sharp models have issues depth of field but are best at removing artifacts
"""],

    "2x-AnimeSharpV2_RPLKSR_Soft.pth" : ["https://github.com/Kim2091/Kim2091-Models/releases/download/2x-AnimeSharpV2_Set/2x-AnimeSharpV2_RPLKSR_Soft.pth",
                                         "https://openmodeldb.info/models/2x-AnimeSharpV2-RPLKSR-Soft", 
"""Kim2091: This is my first anime model in years. Hopefully you guys can find a good use-case for it.
RealPLKSR (Higher quality, slower) Soft: For cleaner sources. Soft models preserve depth of field but may not remove other artifacts as well"""],

    "4xPurePhoto-RealPLSKR.pth"       : ["https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/4xPurePhoto-RealPLSKR.pth",
                                        "https://openmodeldb.info/models/4x-PurePhoto-RealPLSKR", 
"""Skilled in working with cats, hair, parties, and creating clear images.
Also proficient in resizing photos and enlarging large, sharp images.
Can effectively improve images from small sizes as well (300px at smallest on one side, depending on the subject).
Experienced in experimenting with techniques like upscaling with this model twice and \
then reducing it by 50% to enhance details, especially in features like hair or animals."""],

    "2x_Text2HD_v.1-RealPLKSR.pth"    : ["https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/2x_Text2HD_v.1-RealPLKSR.pth",
                                        "https://openmodeldb.info/models/2x-Text2HD-v-1", 
"""Purpose: Upscale text in very low quality to normal quality.
The upscale model is specifically designed to enhance lower-quality text images, \
improving their clarity and readability by upscaling them by 2x.
It excels at processing moderately sized text, effectively transforming it into high-quality, legible scans.
However, the model may encounter challenges when dealing with very small text, \
as its performance is optimized for text of a certain minimum size. For best results, \
input images should contain text that is not excessively small."""],

    "2xVHS2HD-RealPLKSR.pth"          : ["https://github.com/starinspace/StarinspaceUpscale/releases/download/Models/2xVHS2HD-RealPLKSR.pth",
                                        "https://openmodeldb.info/models/2x-VHS2HD", 
"""An advanced VHS recording model designed to enhance video quality by reducing artifacts such as haloing, ghosting, and noise patterns.
Optimized primarily for PAL resolution (NTSC might work good as well)."""],

    "4xNomosWebPhoto_RealPLKSR.pth"   : ["https://github.com/Phhofm/models/releases/download/4xNomosWebPhoto_RealPLKSR/4xNomosWebPhoto_RealPLKSR.pth",
                                        "https://openmodeldb.info/models/4x-NomosWebPhoto-RealPLKSR", 
"""4x RealPLKSR model for photography, trained with realistic noise, lens blur, jpg and webp re-compression."""],

#     "4xNomos2_hq_drct-l.pth"          : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_drct-l/4xNomos2_hq_drct-l.pth", 
#                                         "https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_drct-l",
# """An drct-l 4x upscaling model, similiar to the 4xNomos2_hq_atd, 4xNomos2_hq_dat2 and 4xNomos2_hq_mosr models, trained and for usage on non-degraded input to give good quality output.
# """],

#     "4xNomos2_hq_atd.pth"             : ["https://github.com/Phhofm/models/releases/download/4xNomos2_hq_atd/4xNomos2_hq_atd.pth", 
#                                          "https://github.com/Phhofm/models/releases/tag/4xNomos2_hq_atd",
# """An atd 4x upscaling model, similiar to the 4xNomos2_hq_dat2 or 4xNomos2_hq_mosr models, trained and for usage on non-degraded input to give good quality output.
# """]
}

example_list = ["images/a01.jpg", "images/a02.jpg", "images/a03.jpg", "images/a04.jpg", "images/bus.jpg", "images/zidane.jpg", 
                "images/b01.jpg", "images/b02.jpg", "images/b03.jpg", "images/b04.jpg", "images/b05.jpg", "images/b06.jpg", 
                "images/b07.jpg", "images/b08.jpg", "images/b09.jpg", "images/b10.jpg", "images/b11.jpg", "images/c01.jpg",  
                "images/c02.jpg", "images/c03.jpg", "images/c04.jpg", "images/c05.jpg", "images/c06.jpg", "images/c07.jpg", 
                "images/c08.jpg", "images/c09.jpg", "images/c10.jpg"]

def get_model_type(model_name):
    # Define model type mappings based on key parts of the model names
    model_type = "other"
    if any(value in model_name.lower() for value in ("realesrgan", "realesrnet")):
        model_type = "RRDB"
    elif "realesr" in model_name.lower() in model_name.lower():
        model_type = "SRVGG"
    elif "esrgan" in model_name.lower() or "4x-AnimeSharp.pth" == model_name:
        model_type = "ESRGAN"
    elif "dat" in model_name.lower():
        model_type = "DAT"
    elif "hat" in model_name.lower():
        model_type = "HAT"
    elif ("realplksr" in model_name.lower() and "dysample" in model_name.lower()) or "rplksrd" in model_name.lower():
        model_type = "RealPLKSR_dysample"
    elif "realplksr" in model_name.lower() or "rplksr" in model_name.lower():
        model_type = "RealPLKSR"
    elif "drct-l" in model_name.lower():
        model_type = "DRCT-L"
    elif "atd" in model_name.lower():
        model_type = "ATD"
    return f"{model_type}, {model_name}"

typed_upscale_models = {get_model_type(key): value[0] for key, value in upscale_models.items()}


class Upscale:
    def inference(self, img, face_restoration, upscale_model, scale: float, face_detection, outputWithModelName: bool):
        print(img)
        print(face_restoration, upscale_model, scale)
        try:
            self.scale = scale
            self.img_name = os.path.basename(str(img))
            self.basename, self.extension = os.path.splitext(self.img_name)
            
            img = cv2.imdecode(np.fromfile(img, np.uint8), cv2.IMREAD_UNCHANGED) # cv2.imread(img, cv2.IMREAD_UNCHANGED)
            
            self.img_mode = "RGBA" if len(img.shape) == 3 and img.shape[2] == 4 else None
            if len(img.shape) == 2:  # for gray inputs
                img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

            h, w = img.shape[0:2]

            if face_restoration:
                download_from_url(face_models[face_restoration][0], face_restoration, os.path.join("weights", "face"))
                
            modelInUse = ""
            upscale_type = None
            if upscale_model:
                upscale_type, upscale_model = upscale_model.split(", ", 1)
                download_from_url(upscale_models[upscale_model][0], upscale_model, os.path.join("weights", "upscale"))
                modelInUse = f"_{os.path.splitext(upscale_model)[0]}"
            
            netscale = 4
            loadnet = None
            model = None
            is_auto_split_upscale = True
            half = True if torch.cuda.is_available() else False
            if upscale_type:
                from basicsr.archs.rrdbnet_arch import RRDBNet
                from basicsr.archs.realplksr_arch import realplksr
                # background enhancer with upscale model
                if upscale_type == "RRDB":
                    netscale = 2 if "x2" in upscale_model else 4
                    num_block = 6 if "6B" in upscale_model else 23
                    model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=num_block, num_grow_ch=32, scale=netscale)
                elif upscale_type == "SRVGG":
                    from realesrgan.archs.srvgg_arch import SRVGGNetCompact
                    netscale = 4
                    num_conv = 16 if "animevideov3" in upscale_model else 32
                    model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=num_conv, upscale=netscale, act_type='prelu')
                elif upscale_type == "ESRGAN":
                    netscale = 4
                    model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=netscale)
                    loadnet = {}
                    loadnet_origin = torch.load(os.path.join("weights", "upscale", upscale_model), map_location=torch.device('cpu'), weights_only=True)
                    for key, value in loadnet_origin.items():
                        new_key = key.replace("model.0", "conv_first").replace("model.1.sub.23.", "conv_body.").replace("model.1.sub", "body") \
                            .replace(".0.weight", ".weight").replace(".0.bias", ".bias").replace(".RDB1.", ".rdb1.").replace(".RDB2.", ".rdb2.").replace(".RDB3.", ".rdb3.") \
                            .replace("model.3.", "conv_up1.").replace("model.6.", "conv_up2.").replace("model.8.", "conv_hr.").replace("model.10.", "conv_last.")
                        loadnet[new_key] = value
                elif upscale_type == "DAT":
                    from basicsr.archs.dat_arch import DAT
                    half = False
                    netscale = 4
                    expansion_factor = 2. if "dat2" in upscale_model.lower() else 4.
                    model = DAT(img_size=64, in_chans=3, embed_dim=180, split_size=[8,32], depth=[6,6,6,6,6,6], num_heads=[6,6,6,6,6,6], expansion_factor=expansion_factor, upscale=netscale)
                    # # Speculate on the parameters.
                    # loadnet_origin = torch.load(os.path.join("weights", "upscale", upscale_model), map_location=torch.device('cpu'), weights_only=True)
                    # inferred_params = self.infer_parameters_from_state_dict_for_dat(loadnet_origin, netscale)
                    # for param, value in inferred_params.items():
                    #     print(f"{param}: {value}")
                elif upscale_type == "HAT":
                    half = False
                    netscale = 4
                    import torch.nn.functional as F
                    from basicsr.archs.hat_arch import HAT
                    class HATWithAutoPadding(HAT):
                        def pad_to_multiple(self, img, multiple):
                            """
                            Fill the image to multiples of both width and height as integers.
                            """
                            _, _, h, w = img.shape
                            pad_h = (multiple - h % multiple) % multiple
                            pad_w = (multiple - w % multiple) % multiple

                            # Padding on the top, bottom, left, and right.
                            pad_top = pad_h // 2
                            pad_bottom = pad_h - pad_top
                            pad_left = pad_w // 2
                            pad_right = pad_w - pad_left

                            img_padded = F.pad(img, (pad_left, pad_right, pad_top, pad_bottom), mode="reflect")
                            return img_padded, (pad_top, pad_bottom, pad_left, pad_right)

                        def remove_padding(self, img, pad_info):
                            """
                            Remove padding and restore to the original size, considering upscaling.
                            """
                            pad_top, pad_bottom, pad_left, pad_right = pad_info

                            # Adjust padding based on upscaling factor
                            pad_top = int(pad_top * self.upscale)
                            pad_bottom = int(pad_bottom * self.upscale)
                            pad_left = int(pad_left * self.upscale)
                            pad_right = int(pad_right * self.upscale)

                            return img[:, :, pad_top:-pad_bottom if pad_bottom > 0 else None, pad_left:-pad_right if pad_right > 0 else None]

                        def forward(self, x):
                            # Step 1: Auto padding
                            x_padded, pad_info = self.pad_to_multiple(x, self.window_size)

                            # Step 2: Normal model processing
                            x_processed = super().forward(x_padded)

                            # Step 3: Remove padding
                            x_cropped = self.remove_padding(x_processed, pad_info)
                            return x_cropped

                    # The parameters are derived from the XPixelGroup project files: HAT-L_SRx4_ImageNet-pretrain.yml and HAT-S_SRx4.yml.
                    # https://github.com/XPixelGroup/HAT/tree/main/options/test
                    if "hat-l" in upscale_model.lower():
                        window_size = 16
                        compress_ratio = 3
                        squeeze_factor = 30
                        depths = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
                        embed_dim = 180
                        num_heads = [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
                        mlp_ratio = 2
                        upsampler = "pixelshuffle"
                    elif "hat-s" in upscale_model.lower():
                        window_size = 16
                        compress_ratio = 24
                        squeeze_factor = 24
                        depths = [6, 6, 6, 6, 6, 6]
                        embed_dim = 144
                        num_heads = [6, 6, 6, 6, 6, 6]
                        mlp_ratio = 2
                        upsampler = "pixelshuffle"
                    model = HATWithAutoPadding(img_size=64, patch_size=1, in_chans=3, embed_dim=embed_dim, depths=depths, num_heads=num_heads, window_size=window_size, compress_ratio=compress_ratio,
                                squeeze_factor=squeeze_factor, conv_scale=0.01, overlap_ratio=0.5, mlp_ratio=mlp_ratio, upsampler=upsampler, upscale=netscale,)
                elif upscale_type == "RealPLKSR_dysample":
                    netscale = 4
                    model = realplksr(dim=64, n_blocks=28, kernel_size=17, split_ratio=0.25, upscaling_factor=netscale, dysample=True)
                elif upscale_type == "RealPLKSR":
                    half = False if "RealPLSKR" in upscale_model else half
                    netscale = 2 if upscale_model.startswith("2x") else 4
                    model = realplksr(dim=64, n_blocks=28, kernel_size=17, split_ratio=0.25, upscaling_factor=netscale)

            
            self.upsampler = None
            if loadnet:
                self.upsampler = RealESRGANer(scale=netscale, loadnet=loadnet, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
            elif model:
                self.upsampler = RealESRGANer(scale=netscale, model_path=os.path.join("weights", "upscale", upscale_model), model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
            elif upscale_model:
                self.upsampler = None
                import PIL
                from image_gen_aux import UpscaleWithModel
                class UpscaleWithModel_Gfpgan(UpscaleWithModel):
                    def cv2pil(self, image):
                        ''' OpenCV type -> PIL type
                        https://qiita.com/derodero24/items/f22c22b22451609908ee
                        '''
                        new_image = image.copy()
                        if new_image.ndim == 2:  # Grayscale
                            pass
                        elif new_image.shape[2] == 3:  # Color
                            new_image = cv2.cvtColor(new_image, cv2.COLOR_BGR2RGB)
                        elif new_image.shape[2] == 4:  # Transparency
                            new_image = cv2.cvtColor(new_image, cv2.COLOR_BGRA2RGBA)
                        new_image = PIL.Image.fromarray(new_image)
                        return new_image

                    def pil2cv(self, image):
                        ''' PIL type -> OpenCV type
                        https://qiita.com/derodero24/items/f22c22b22451609908ee
                        '''
                        new_image = np.array(image, dtype=np.uint8)
                        if new_image.ndim == 2:  # Grayscale
                            pass
                        elif new_image.shape[2] == 3:  # Color
                            new_image = cv2.cvtColor(new_image, cv2.COLOR_RGB2BGR)
                        elif new_image.shape[2] == 4:  # Transparency
                            new_image = cv2.cvtColor(new_image, cv2.COLOR_RGBA2BGRA)
                        return new_image

                    def enhance(self, img, outscale=None):
                        # img: numpy
                        h_input, w_input = img.shape[0:2]
                        pil_img = self.cv2pil(img)
                        pil_img = self.__call__(pil_img)
                        cv_image = self.pil2cv(pil_img)
                        if outscale is not None and outscale != float(netscale):
                            cv_image = cv2.resize(
                                cv_image, (
                                    int(w_input * outscale),
                                    int(h_input * outscale),
                                ), interpolation=cv2.INTER_LANCZOS4)
                        return cv_image, None

                device = "cuda" if torch.cuda.is_available() else "cpu"
                upscaler = UpscaleWithModel.from_pretrained(os.path.join("weights", "upscale", upscale_model)).to(device)
                upscaler.__class__ = UpscaleWithModel_Gfpgan
                self.upsampler = upscaler
            self.face_enhancer = None

            resolution = 512
            if face_restoration:
                modelInUse = f"_{os.path.splitext(face_restoration)[0]}" + modelInUse
                from gfpgan.utils import GFPGANer
                model_rootpath = os.path.join("weights", "face")
                model_path = os.path.join(model_rootpath, face_restoration)
                channel_multiplier = None

                if face_restoration and face_restoration.startswith("GFPGANv1."):
                    arch = "clean"
                    channel_multiplier = 2
                elif face_restoration and face_restoration.startswith("RestoreFormer"):
                    arch = "RestoreFormer++" if face_restoration.startswith("RestoreFormer++") else "RestoreFormer"
                elif face_restoration == 'CodeFormer.pth':
                    arch = "CodeFormer"
                elif face_restoration.startswith("GPEN-BFR-"):
                    arch = "GPEN"
                    channel_multiplier = 2
                    if "1024" in face_restoration:
                        arch = "GPEN-1024"
                        resolution = 1024
                    elif "2048" in face_restoration:
                        arch = "GPEN-2048"
                        resolution = 2048

                self.face_enhancer = GFPGANer(model_path=model_path, upscale=self.scale, arch=arch, channel_multiplier=channel_multiplier, bg_upsampler=self.upsampler, model_rootpath=model_rootpath, det_model=face_detection, resolution=resolution)

            files = []
            if not outputWithModelName:
                modelInUse = ""

            try:
                bg_upsample_img = None
                if self.upsampler and self.upsampler.enhance:
                    from utils.dataops import auto_split_upscale
                    bg_upsample_img, _ = auto_split_upscale(img, self.upsampler.enhance, self.scale) if is_auto_split_upscale else self.upsampler.enhance(img, outscale=self.scale)
                    
                if self.face_enhancer:
                    cropped_faces, restored_aligned, bg_upsample_img = self.face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, bg_upsample_img=bg_upsample_img)
                    # save faces
                    if cropped_faces and restored_aligned:
                        for idx, (cropped_face, restored_face) in enumerate(zip(cropped_faces, restored_aligned)):
                            # save cropped face
                            save_crop_path = f"output/{self.basename}{idx:02d}_cropped_faces{modelInUse}.png"
                            self.imwriteUTF8(save_crop_path, cropped_face)
                            # save restored face
                            save_restore_path = f"output/{self.basename}{idx:02d}_restored_faces{modelInUse}.png"
                            self.imwriteUTF8(save_restore_path, restored_face)
                            # save comparison image
                            save_cmp_path = f"output/{self.basename}{idx:02d}_cmp{modelInUse}.png"
                            cmp_img = np.concatenate((cropped_face, restored_face), axis=1)
                            self.imwriteUTF8(save_cmp_path, cmp_img)
        
                            files.append(save_crop_path)
                            files.append(save_restore_path)
                            files.append(save_cmp_path)

                restored_img = bg_upsample_img
            except RuntimeError as error:
                print(traceback.format_exc())
                print('Error', error)
            finally:
                if self.face_enhancer:
                    self.face_enhancer._cleanup()
                else:
                    # Free GPU memory and clean up resources
                    torch.cuda.empty_cache()
                    gc.collect()

            if not self.extension:
                self.extension = ".png" if self.img_mode == "RGBA" else ".jpg" # RGBA images should be saved in png format
            save_path = f"output/{self.basename}{modelInUse}{self.extension}"
            self.imwriteUTF8(save_path, restored_img)

            restored_img = cv2.cvtColor(restored_img, cv2.COLOR_BGR2RGB)
            files.append(save_path)
            return files, files
        except Exception as error:
            print(traceback.format_exc())
            print("global exception", error)
            return None, None


    def infer_parameters_from_state_dict_for_dat(self, state_dict, upscale=4):
        if "params" in state_dict:
            state_dict = state_dict["params"]
        elif "params_ema" in state_dict:
            state_dict = state_dict["params_ema"]

        inferred_params = {}

        # Speculate on the depth.
        depth = {}
        for key in state_dict.keys():
            if "blocks" in key:
                layer = int(key.split(".")[1])
                block = int(key.split(".")[3])
                depth[layer] = max(depth.get(layer, 0), block + 1)
        inferred_params["depth"] = [depth[layer] for layer in sorted(depth.keys())]

        # Speculate on the number of num_heads per layer.
        # ex.
        # layers.0.blocks.1.attn.temperature: torch.Size([6, 1, 1])
        # layers.5.blocks.5.attn.temperature: torch.Size([6, 1, 1])
        # The shape of temperature is [num_heads, 1, 1].
        num_heads = []
        for layer in range(len(inferred_params["depth"])):
            for block in range(inferred_params["depth"][layer]):
                key = f"layers.{layer}.blocks.{block}.attn.temperature"
                if key in state_dict:
                    num_heads_layer = state_dict[key].shape[0]
                    num_heads.append(num_heads_layer)
                    break

        inferred_params["num_heads"] = num_heads

        # Speculate on embed_dim.
        # ex. layers.0.blocks.0.attn.qkv.weight: torch.Size([540, 180])
        for key in state_dict.keys():
            if "attn.qkv.weight" in key:
                qkv_weight = state_dict[key]
                embed_dim = qkv_weight.shape[1]  # Note: The in_features of qkv corresponds to embed_dim.
                inferred_params["embed_dim"] = embed_dim
                break

        # Speculate on split_size.
        # ex.
        # layers.0.blocks.0.attn.attns.0.rpe_biases: torch.Size([945, 2])
        # layers.0.blocks.0.attn.attns.0.relative_position_index: torch.Size([256, 256])
        # layers.0.blocks.2.attn.attn_mask_0: torch.Size([16, 256, 256])
        # layers.0.blocks.2.attn.attn_mask_1: torch.Size([16, 256, 256])
        for key in state_dict.keys():
            if "relative_position_index" in key:
                relative_position_size = state_dict[key].shape[0]
                # Determine split_size[0] and split_size[1] based on the provided data.
                split_size_0, split_size_1 = 8, relative_position_size // 8  # 256 = 8 * 32
                inferred_params["split_size"] = [split_size_0, split_size_1]
                break

        # Speculate on the expansion_factor.
        # ex.
        # layers.0.blocks.0.ffn.fc1.weight: torch.Size([360, 180])
        # layers.5.blocks.5.ffn.fc1.weight: torch.Size([360, 180])
        if "embed_dim" in inferred_params:
            for key in state_dict.keys():
                if "ffn.fc1.weight" in key:
                    fc1_weight = state_dict[key]
                    expansion_factor = fc1_weight.shape[0] // inferred_params["embed_dim"]
                    inferred_params["expansion_factor"] = expansion_factor
                    break

        inferred_params["img_size"] = 64
        inferred_params["in_chans"] = 3  # Assume an RGB image.

        for key in state_dict.keys():
            print(f"{key}: {state_dict[key].shape}")

        return inferred_params


    def imwriteUTF8(self, save_path, image): # `cv2.imwrite` does not support writing files to UTF-8 file paths.
        img_name = os.path.basename(save_path)
        _, extension = os.path.splitext(img_name)
        is_success, im_buf_arr = cv2.imencode(extension, image)
        if (is_success): im_buf_arr.tofile(save_path)


def main():
    if torch.cuda.is_available():
        torch.cuda.set_per_process_memory_fraction(0.975, device='cuda:0')
    # Ensure the target directory exists
    os.makedirs('output', exist_ok=True)

    title = "Image Upscaling & Restoration using GFPGAN / RestoreFormerPlusPlus / CodeFormer / GPEN Algorithm"
    description = r"""
    <a href='https://github.com/TencentARC/GFPGAN' target='_blank'><b>GFPGAN: Towards Real-World Blind Face Restoration and Upscalling of the image with a Generative Facial Prior</b></a>. <br>
    <a href='https://github.com/wzhouxiff/RestoreFormerPlusPlus' target='_blank'><b>RestoreFormer++: Towards Real-World Blind Face Restoration from Undegraded Key-Value Pairs</b></a>. <br>
    <a href='https://github.com/sczhou/CodeFormer' target='_blank'><b>CodeFormer: Towards Robust Blind Face Restoration with Codebook Lookup Transformer (NeurIPS 2022)</b></a>. <br>
    <a href='https://github.com/yangxy/GPEN' target='_blank'><b>GPEN: GAN Prior Embedded Network for Blind Face Restoration in the Wild</b></a>. <br>
    <br>
    Practically, the aforementioned algorithm is used to restore your **old photos** or improve **AI-generated faces**.<br>
    To use it, simply just upload the concerned image.<br>
    """
    article = r"""
    [![download](https://img.shields.io/github/downloads/TencentARC/GFPGAN/total.svg)](https://github.com/TencentARC/GFPGAN/releases)
    [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/GFPGAN?style=social)](https://github.com/TencentARC/GFPGAN)
    [![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
    """

    upscale = Upscale()

    with gr.Blocks(title = title) as demo:
        gr.Markdown(value=f"<h1 style=\"text-align:center;\">{title}</h1><br>{description}")
        with gr.Row():
            with gr.Column(variant="panel"):
                input_image = gr.Image(type="filepath", label="Input", format="png")
                face_model = gr.Dropdown(list(face_models.keys())+[None], type="value", value='GFPGANv1.4.pth', label='Face Restoration version', info="Face Restoration and RealESR can be freely combined in different ways, or one can be set to \"None\" to use only the other model. Face Restoration is primarily used for face restoration in real-life images, while RealESR serves as a background restoration model.")
                upscale_model = gr.Dropdown(list(typed_upscale_models.keys())+[None], type="value", value='SRVGG, realesr-general-x4v3.pth', label='UpScale version')
                upscale_scale = gr.Number(label="Rescaling factor", value=4)
                face_detection = gr.Dropdown(["retinaface_resnet50", "YOLOv5l", "YOLOv5n"], type="value", value="retinaface_resnet50", label="Face Detection type")
                with_model_name = gr.Checkbox(label="Output image files name with model name", value=True)
                with gr.Row():
                    submit = gr.Button(value="Submit", variant="primary", size="lg")
                    clear = gr.ClearButton(
                        components=[
                            input_image,
                            face_model,
                            upscale_model,
                            upscale_scale,
                            face_detection,
                            with_model_name,
                        ], variant="secondary", size="lg",)
            with gr.Column(variant="panel"):
                gallerys = gr.Gallery(type="filepath", label="Output (The whole image)", format="png")
                outputs = gr.File(label="Download the output image")
        with gr.Row(variant="panel"):
            # Generate output array
            output_arr = []
            for file_name in example_list:
                output_arr.append([file_name,])
            gr.Examples(output_arr, inputs=[input_image,], examples_per_page=20)
        with gr.Row(variant="panel"):
            # Convert to Markdown table
            header = "| Face Model Name | Info | Download URL |\n|------------|------|--------------|"
            rows = [
                f"| [{key}]({value[1]}) | " + value[2].replace("\n", "<br>") + f" | [download]({value[0]}) |"
                for key, value in face_models.items()
            ]
            markdown_table = header + "\n" + "\n".join(rows)
            gr.Markdown(value=markdown_table)
        with gr.Row(variant="panel"):
            # Convert to Markdown table
            header = "| Upscale Model Name | Info | Download URL |\n|------------|------|--------------|"
            rows = [
                f"| [{key}]({value[1]}) | " + value[2].replace("\n", "<br>") + f" | [download]({value[0]}) |"
                for key, value in upscale_models.items()
            ]
            markdown_table = header + "\n" + "\n".join(rows)
            gr.Markdown(value=markdown_table)

        submit.click(
            upscale.inference, 
            inputs=[
                input_image,
                face_model,
                upscale_model,
                upscale_scale,
                face_detection,
                with_model_name,
            ],
            outputs=[gallerys, outputs],
        )
    
    demo.queue(default_concurrency_limit=1)
    demo.launch(inbrowser=True)


if __name__ == "__main__":
    main()