indie-label / server.py
Michelle Lam
Adds automatically generated usernames. Removes username selection and shared user store. Removes Results and Study Links views. Removes AppOld component.
70ab0be
raw
history blame
30 kB
from flask import Flask, send_from_directory
from flask import request
import random
import json
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import pickle
import os
from sklearn.metrics import mean_absolute_error
from sklearn.metrics import mean_squared_error
from sklearn.metrics import confusion_matrix
import math
import altair as alt
import matplotlib.pyplot as plt
import time
import friendlywords as fw
import audit_utils as utils
app = Flask(__name__)
DEBUG = False # Debug flag for development; set to False for production
# Path for our main Svelte page
@app.route("/")
def base():
return send_from_directory('indie_label_svelte/public', 'index.html')
# Path for all the static files (compiled JS/CSS, etc.)
@app.route("/<path:path>")
def home(path):
return send_from_directory('indie_label_svelte/public', path)
########################################
# ROUTE: /AUDIT_SETTINGS
comments_grouped_full_topic_cat = pd.read_pickle("data/comments_grouped_full_topic_cat2_persp.pkl")
@app.route("/audit_settings")
def audit_settings(debug=DEBUG):
# Fetch page content
user = request.args.get("user")
scaffold_method = request.args.get("scaffold_method")
# Assign user ID if none is provided (default case)
if user == "null":
if debug:
user = "DemoUser"
else:
# Generate random two-word user ID
user = fw.generate(2, separator="_")
user_models = utils.get_all_model_names(user)
grp_models = [m for m in user_models if m.startswith(f"model_{user}_group_")]
clusters = utils.get_unique_topics()
if len(user_models) > 2 and scaffold_method != "tutorial" and user != "DemoUser":
# Highlight topics that have been tuned
tuned_clusters = [m.lstrip(f"model_{user}_") for m in user_models if (m != f"model_{user}" and not m.startswith(f"model_{user}_group_"))]
other_clusters = [c for c in clusters if c not in tuned_clusters]
tuned_options = {
"label": "Topics with tuned models",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(tuned_clusters)],
}
other_options = {
"label": "All other topics",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(other_clusters)],
}
clusters_options = [tuned_options, other_options]
else:
clusters_options = [{
"label": "All auto-generated topics",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(clusters)],
},]
if scaffold_method == "personal_cluster":
cluster_model = user_models[0]
personal_cluster_file = f"./data/personal_cluster_dfs/{cluster_model}.pkl"
if os.path.isfile(personal_cluster_file) and cluster_model != "":
print("audit_settings", personal_cluster_file, cluster_model)
topics_under_top, topics_over_top = utils.get_personal_clusters(cluster_model)
pers_cluster = topics_under_top + topics_over_top
pers_cluster_options = {
"label": "Personalized clusters",
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(pers_cluster)],
}
clusters_options.insert(0, pers_cluster_options)
clusters_for_tuning = utils.get_large_clusters(min_n=150)
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element
context = {
"personalized_models": user_models,
"personalized_model_grp": grp_models,
"perf_metrics": ["Average rating difference", "Mean Absolute Error (MAE)", "Root Mean Squared Error (RMSE)", "Mean Squared Error (MSE)"],
"breakdown_categories": ['Topic', 'Toxicity Category', 'Toxicity Severity'],
"clusters": clusters_options,
"clusters_for_tuning": clusters_for_tuning_options,
"user": user,
}
return json.dumps(context)
########################################
# ROUTE: /GET_AUDIT
@app.route("/get_audit")
def get_audit():
pers_model = request.args.get("pers_model")
perf_metric = request.args.get("perf_metric")
breakdown_axis = request.args.get("breakdown_axis")
breakdown_sort = request.args.get("breakdown_sort")
n_topics = int(request.args.get("n_topics"))
error_type = request.args.get("error_type")
cur_user = request.args.get("cur_user")
topic_vis_method = request.args.get("topic_vis_method")
if topic_vis_method == "null":
topic_vis_method = "median"
if breakdown_sort == "difference":
sort_class_plot = True
elif breakdown_sort == "default":
sort_class_plot = False
else:
raise Exception("Invalid breakdown_sort value")
overall_perf = utils.show_overall_perf(
variant=pers_model,
error_type=error_type,
cur_user=cur_user,
breakdown_axis=breakdown_axis,
topic_vis_method=topic_vis_method,
)
results = {
"overall_perf": overall_perf,
}
return json.dumps(results)
########################################
# ROUTE: /GET_CLUSTER_RESULTS
@app.route("/get_cluster_results")
def get_cluster_results():
pers_model = request.args.get("pers_model")
n_examples = int(request.args.get("n_examples"))
cluster = request.args.get("cluster")
example_sort = request.args.get("example_sort")
comparison_group = request.args.get("comparison_group")
topic_df_ids = request.args.getlist("topic_df_ids")
topic_df_ids = [int(val) for val in topic_df_ids[0].split(",") if val != ""]
search_type = request.args.get("search_type")
keyword = request.args.get("keyword")
n_neighbors = request.args.get("n_neighbors")
if n_neighbors != "null":
n_neighbors = int(n_neighbors)
neighbor_threshold = 0.6
error_type = request.args.get("error_type")
use_model = request.args.get("use_model") == "true"
scaffold_method = request.args.get("scaffold_method")
# If user has a tuned model for this cluster, use that
cluster_model_file = f"./data/trained_models/{pers_model}_{cluster}.pkl"
if os.path.isfile(cluster_model_file):
pers_model = f"{pers_model}_{cluster}"
print(f"get_cluster_results using model {pers_model}")
other_ids = []
perf_metric = "avg_diff"
sort_ascending = True if example_sort == "ascending" else False
topic_df = None
personal_cluster_file = f"./data/personal_cluster_dfs/{pers_model}.pkl"
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)):
# Handle personal clusters
with open(personal_cluster_file, "rb") as f:
topic_df = pickle.load(f)
topic_df = topic_df[(topic_df["topic"] == cluster)]
else:
# Regular handling
with open(f"data/preds_dfs/{pers_model}.pkl", "rb") as f:
topic_df = pickle.load(f)
if search_type == "cluster":
# Display examples with comment, your pred, and other users' pred
topic_df = topic_df[(topic_df["topic"] == cluster) | (topic_df["item_id"].isin(topic_df_ids))]
elif search_type == "neighbors":
neighbor_ids = utils.get_match(topic_df_ids, K=n_neighbors, threshold=neighbor_threshold, debug=False)
topic_df = topic_df[(topic_df["item_id"].isin(neighbor_ids)) | (topic_df["item_id"].isin(topic_df_ids))]
elif search_type == "keyword":
topic_df = topic_df[(topic_df["comment"].str.contains(keyword, case=False, regex=False)) | (topic_df["item_id"].isin(topic_df_ids))]
topic_df = topic_df.drop_duplicates()
print("len topic_df", len(topic_df))
# Handle empty results
if len(topic_df) == 0:
results = {
"user_perf_rounded": None,
"user_direction": None,
"other_perf_rounded": None,
"other_direction": None,
"n_other_users": None,
"cluster_examples": None,
"odds_ratio": None,
"odds_ratio_explanation": None,
"topic_df_ids": [],
"cluster_overview_plot_json": None,
"cluster_comments": None,
}
return results
topic_df_ids = topic_df["item_id"].unique().tolist()
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)):
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df, error_type=error_type, n_comments=500)
else:
# Default case
topic_df_mod = topic_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg'))
if use_model:
# Display results with the model as a reference point
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df_mod, error_type=error_type, n_comments=500)
else:
# Display results without a model
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster_no_model(topic_df_mod, n_comments=500)
cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, num_examples=n_examples, use_model=use_model) # New version of cluster comment table
results = {
"topic_df_ids": topic_df_ids,
"cluster_overview_plot_json": json.loads(cluster_overview_plot_json),
"cluster_comments": cluster_comments,
}
return json.dumps(results)
########################################
# ROUTE: /GET_GROUP_SIZE
@app.route("/get_group_size")
def get_group_size():
# Fetch info for initial labeling component
sel_gender = request.args.get("sel_gender")
sel_pol = request.args.get("sel_pol")
sel_relig = request.args.get("sel_relig")
sel_race = request.args.get("sel_race")
sel_lgbtq = request.args.get("sel_lgbtq")
if sel_race != "":
sel_race = sel_race.split(",")
_, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq)
context = {
"group_size": group_size,
}
return json.dumps(context)
########################################
# ROUTE: /GET_GROUP_MODEL
@app.route("/get_group_model")
def get_group_model():
# Fetch info for initial labeling component
model_name = request.args.get("model_name")
user = request.args.get("user")
sel_gender = request.args.get("sel_gender")
sel_pol = request.args.get("sel_pol")
sel_relig = request.args.get("sel_relig")
sel_lgbtq = request.args.get("sel_lgbtq")
sel_race_orig = request.args.get("sel_race")
if sel_race_orig != "":
sel_race = sel_race_orig.split(",")
else:
sel_race = ""
start = time.time()
grp_df, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq)
grp_ids = grp_df["worker_id"].tolist()
ratings_grp = utils.get_grp_model_labels(
comments_df=comments_grouped_full_topic_cat,
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
grp_ids=grp_ids,
)
# print("ratings_grp", ratings_grp)
# Modify model name
model_name = f"{model_name}_group_gender{sel_gender}_relig{sel_relig}_pol{sel_pol}_race{sel_race_orig}_lgbtq_{sel_lgbtq}"
label_dir = f"./data/labels/{model_name}"
# Create directory for labels if it doesn't yet exist
if not os.path.isdir(label_dir):
os.mkdir(label_dir)
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))])
# Train group model
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings_grp, user)
duration = time.time() - start
print("Time to train/cache:", duration)
context = {
"group_size": group_size,
"mae": mae,
}
return json.dumps(context)
########################################
# ROUTE: /GET_LABELING
@app.route("/get_labeling")
def get_labeling():
# Fetch info for initial labeling component
user = request.args.get("user")
clusters_for_tuning = utils.get_large_clusters(min_n=150)
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element
model_name_suggestion = f"my_model"
context = {
"personalized_models": utils.get_all_model_names(user),
"model_name_suggestion": model_name_suggestion,
"clusters_for_tuning": clusters_for_tuning_options,
}
return json.dumps(context)
########################################
# ROUTE: /GET_COMMENTS_TO_LABEL
N_LABEL_PER_BIN = 8 # 8 * 5 = 40 comments
BIN_DISTRIB = [4, 8, 16, 8, 4]
SCORE_BINS = [(0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 4.01)]
@app.route("/get_comments_to_label")
def get_comments_to_label():
n = int(request.args.get("n"))
# Fetch examples to label
to_label_ids = utils.create_example_sets(
comments_df=comments_grouped_full_topic_cat,
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
keyword=None
)
random.shuffle(to_label_ids) # randomize to not prime users
to_label_ids = to_label_ids[:n]
ids_to_comments = utils.get_ids_to_comments()
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids]
context = {
"to_label": to_label,
}
return json.dumps(context)
########################################
# ROUTE: /GET_COMMENTS_TO_LABEL_TOPIC
N_LABEL_PER_BIN_TOPIC = 2 # 2 * 5 = 10 comments
@app.route("/get_comments_to_label_topic")
def get_comments_to_label_topic():
# Fetch examples to label
topic = request.args.get("topic")
to_label_ids = utils.create_example_sets(
comments_df=comments_grouped_full_topic_cat,
# n_label_per_bin=N_LABEL_PER_BIN_TOPIC,
n_label_per_bin=BIN_DISTRIB,
score_bins=SCORE_BINS,
keyword=None,
topic=topic,
)
random.shuffle(to_label_ids) # randomize to not prime users
ids_to_comments = utils.get_ids_to_comments()
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids]
context = {
"to_label": to_label,
}
return json.dumps(context)
########################################
# ROUTE: /GET_PERSONALIZED_MODEL
@app.route("/get_personalized_model")
def get_personalized_model():
model_name = request.args.get("model_name")
ratings_json = request.args.get("ratings")
mode = request.args.get("mode")
user = request.args.get("user")
ratings = json.loads(ratings_json)
print(ratings)
start = time.time()
label_dir = f"./data/labels/{model_name}"
# Create directory for labels if it doesn't yet exist
if not os.path.isdir(label_dir):
os.mkdir(label_dir)
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))])
# Handle existing or new model cases
if mode == "view":
# Fetch prior model performance
if model_name not in utils.get_all_model_names():
raise Exception(f"Model {model_name} does not exist")
else:
mae, mse, rmse, avg_diff, ratings_prev = utils.fetch_existing_data(model_name, last_label_i)
elif mode == "train":
# Train model and cache predictions using new labels
print("get_personalized_model train")
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user)
duration = time.time() - start
print("Time to train/cache:", duration)
perf_plot, mae_status = utils.plot_train_perf_results(model_name, mae)
perf_plot_json = perf_plot.to_json()
def round_metric(x):
return np.round(abs(x), 3)
results = {
"model_name": model_name,
"mae": round_metric(mae),
"mae_status": mae_status,
"mse": round_metric(mse),
"rmse": round_metric(rmse),
"avg_diff": round_metric(avg_diff),
"duration": duration,
"ratings_prev": ratings_prev,
"perf_plot_json": json.loads(perf_plot_json),
}
return json.dumps(results)
########################################
# ROUTE: /GET_PERSONALIZED_MODEL_TOPIC
@app.route("/get_personalized_model_topic")
def get_personalized_model_topic():
model_name = request.args.get("model_name")
ratings_json = request.args.get("ratings")
user = request.args.get("user")
ratings = json.loads(ratings_json)
topic = request.args.get("topic")
print(ratings)
start = time.time()
# Modify model name
model_name = f"{model_name}_{topic}"
label_dir = f"./data/labels/{model_name}"
# Create directory for labels if it doesn't yet exist
if not os.path.isdir(label_dir):
os.mkdir(label_dir)
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))])
# Handle existing or new model cases
# Train model and cache predictions using new labels
print("get_personalized_model_topic train")
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user, topic=topic)
duration = time.time() - start
print("Time to train/cache:", duration)
def round_metric(x):
return np.round(abs(x), 3)
results = {
"success": "success",
"ratings_prev": ratings_prev,
"new_model_name": model_name,
}
return json.dumps(results)
########################################
# ROUTE: /GET_REPORTS
@app.route("/get_reports")
def get_reports():
cur_user = request.args.get("cur_user")
scaffold_method = request.args.get("scaffold_method")
model = request.args.get("model")
topic_vis_method = request.args.get("topic_vis_method")
if topic_vis_method == "null":
topic_vis_method = "fp_fn"
# Load reports for current user from stored files
report_dir = f"./data/user_reports"
user_file = os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl")
if not os.path.isfile(user_file):
if scaffold_method == "fixed":
reports = get_fixed_scaffold()
elif (scaffold_method == "personal" or scaffold_method == "personal_group" or scaffold_method == "personal_test"):
reports = get_personal_scaffold(model, topic_vis_method)
elif (scaffold_method == "personal_cluster"):
reports = get_personal_cluster_scaffold(model)
elif scaffold_method == "prompts":
reports = get_prompts_scaffold()
elif scaffold_method == "tutorial":
reports = get_tutorial_scaffold()
else:
# Prepare empty report
reports = [
{
"title": "",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
}
]
else:
# Load from pickle file
with open(user_file, "rb") as f:
reports = pickle.load(f)
results = {
"reports": reports,
}
return json.dumps(results)
def get_fixed_scaffold():
return [
{
"title": "Topic: 6_jews_jew_jewish_rabbi",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 73_troll_trolls_trolling_spammers",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 66_mexicans_mexico_mexican_spanish",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 89_cowards_coward_cowardly_brave",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Topic: 63_disgusting_gross_toxic_thicc",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
]
def get_empty_report(title, error_type):
return {
"title": f"Topic: {title}",
"error_type": error_type,
"evidence": [],
"text_entry": "",
"complete_status": False,
}
def get_tutorial_scaffold():
return [
{
"title": "Topic: 79_idiot_dumb_stupid_dumber",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
]
def get_personal_cluster_scaffold(model):
topics_under_top, topics_over_top = utils.get_personal_clusters(model)
report_under = [get_empty_report(topic, "System is under-sensitive") for topic in topics_under_top]
report_over = [get_empty_report(topic, "System is over-sensitive") for topic in topics_over_top]
reports = (report_under + report_over)
random.shuffle(reports)
return reports
def get_topic_errors(df, topic_vis_method, threshold=2):
topics = df["topic_"].unique().tolist()
topic_errors = {}
for topic in topics:
t_df = df[df["topic_"] == topic]
y_true = t_df["pred"].to_numpy()
y_pred = t_df["rating"].to_numpy()
if topic_vis_method == "mae":
t_err = mean_absolute_error(y_true, y_pred)
elif topic_vis_method == "mse":
t_err = mean_squared_error(y_true, y_pred)
elif topic_vis_method == "avg_diff":
t_err = np.mean(y_true - y_pred)
elif topic_vis_method == "fp_proportion":
y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()]
y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()]
try:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
except:
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0
total = float(len(y_true))
t_err = fp / total
elif topic_vis_method == "fn_proportion":
y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()]
y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()]
try:
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel()
except:
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0
total = float(len(y_true))
t_err = fn / total
topic_errors[topic] = t_err
return topic_errors
def get_personal_scaffold(model, topic_vis_method, n_topics=200, n=5):
threshold = utils.get_toxic_threshold()
# Get topics with greatest amount of error
with open(f"./data/preds_dfs/{model}.pkl", "rb") as f:
preds_df = pickle.load(f)
preds_df_mod = preds_df.merge(utils.get_comments_grouped_full_topic_cat(), on="item_id", how="left", suffixes=('_', '_avg'))
preds_df_mod = preds_df_mod[preds_df_mod["user_id"] == "A"].sort_values(by=["item_id"]).reset_index()
preds_df_mod = preds_df_mod[preds_df_mod["topic_id_"] < n_topics]
if topic_vis_method == "median":
df = preds_df_mod.groupby(["topic_", "user_id"]).median().reset_index()
elif topic_vis_method == "mean":
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index()
elif topic_vis_method == "fp_fn":
for error_type in ["fn_proportion", "fp_proportion"]:
topic_errors = get_topic_errors(preds_df_mod, error_type)
preds_df_mod[error_type] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()]
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index()
else:
# Get error for each topic
topic_errors = get_topic_errors(preds_df_mod, topic_vis_method)
preds_df_mod[topic_vis_method] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()]
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index()
# Get system error
df = df[(df["topic_"] != "53_maiareficco_kallystas_dyisisitmanila_tractorsazi") & (df["topic_"] != "79_idiot_dumb_stupid_dumber")]
if topic_vis_method == "median" or topic_vis_method == "mean":
df["error_magnitude"] = [utils.get_error_magnitude(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
df_under = df[df["error_type"] == "System is under-sensitive"]
df_under = df_under.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first
report_under = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_under.iterrows()]
df_over = df[df["error_type"] == "System is over-sensitive"]
df_over = df_over.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first
report_over = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_over.iterrows()]
# Set up reports
# return [get_empty_report(row["topic_"], row["error_type"]) for index, row in df.iterrows()]
reports = (report_under + report_over)
random.shuffle(reports)
elif topic_vis_method == "fp_fn":
df_under = df.sort_values(by=["fn_proportion"], ascending=False).head(n)
df_under = df_under[df_under["fn_proportion"] > 0]
report_under = [get_empty_report(row["topic_"], "System is under-sensitive") for _, row in df_under.iterrows()]
df_over = df.sort_values(by=["fp_proportion"], ascending=False).head(n)
df_over = df_over[df_over["fp_proportion"] > 0]
report_over = [get_empty_report(row["topic_"], "System is over-sensitive") for _, row in df_over.iterrows()]
reports = (report_under + report_over)
random.shuffle(reports)
else:
df = df.sort_values(by=[topic_vis_method], ascending=False).head(n * 2)
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())]
reports = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df.iterrows()]
return reports
def get_prompts_scaffold():
return [
{
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as toxic?",
"error_type": "System is over-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as non-toxic?",
"error_type": "System is under-sensitive",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there certain ways that your community tends to be targeted by outsiders?",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there other communities whose content should be very similar to your community's? Verify that this content is treated similarly by the system.",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
{
"title": "Are there ways that you've seen individuals in your community actively try to thwart the rules of automated content moderation systems? Check whether these strategies work here.",
"error_type": "",
"evidence": [],
"text_entry": "",
"complete_status": False,
},
]
########################################
# ROUTE: /SAVE_REPORTS
@app.route("/save_reports")
def save_reports():
cur_user = request.args.get("cur_user")
reports_json = request.args.get("reports")
reports = json.loads(reports_json)
scaffold_method = request.args.get("scaffold_method")
# Save reports for current user to stored files
report_dir = f"./data/user_reports"
# Save to pickle file
with open(os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl"), "wb") as f:
pickle.dump(reports, f)
results = {
"status": "success",
}
return json.dumps(results)
########################################
# ROUTE: /GET_EXPLORE_EXAMPLES
@app.route("/get_explore_examples")
def get_explore_examples():
threshold = utils.get_toxic_threshold()
n_examples = int(request.args.get("n_examples"))
# Get sample of examples
df = utils.get_comments_grouped_full_topic_cat().sample(n=n_examples)
df["system_decision"] = [utils.get_decision(rating, threshold) for rating in df["rating"].tolist()]
df["system_color"] = [utils.get_user_color(sys, threshold) for sys in df["rating"].tolist()] # get cell colors
ex_json = df.to_json(orient="records")
results = {
"examples": ex_json,
}
return json.dumps(results)
if __name__ == "__main__":
app.run(debug=True, port=5001)