Spaces:
Runtime error
Runtime error
Michelle Lam
Adds automatically generated usernames. Removes username selection and shared user store. Removes Results and Study Links views. Removes AppOld component.
70ab0be
from flask import Flask, send_from_directory | |
from flask import request | |
import random | |
import json | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import pandas as pd | |
import pickle | |
import os | |
from sklearn.metrics import mean_absolute_error | |
from sklearn.metrics import mean_squared_error | |
from sklearn.metrics import confusion_matrix | |
import math | |
import altair as alt | |
import matplotlib.pyplot as plt | |
import time | |
import friendlywords as fw | |
import audit_utils as utils | |
app = Flask(__name__) | |
DEBUG = False # Debug flag for development; set to False for production | |
# Path for our main Svelte page | |
def base(): | |
return send_from_directory('indie_label_svelte/public', 'index.html') | |
# Path for all the static files (compiled JS/CSS, etc.) | |
def home(path): | |
return send_from_directory('indie_label_svelte/public', path) | |
######################################## | |
# ROUTE: /AUDIT_SETTINGS | |
comments_grouped_full_topic_cat = pd.read_pickle("data/comments_grouped_full_topic_cat2_persp.pkl") | |
def audit_settings(debug=DEBUG): | |
# Fetch page content | |
user = request.args.get("user") | |
scaffold_method = request.args.get("scaffold_method") | |
# Assign user ID if none is provided (default case) | |
if user == "null": | |
if debug: | |
user = "DemoUser" | |
else: | |
# Generate random two-word user ID | |
user = fw.generate(2, separator="_") | |
user_models = utils.get_all_model_names(user) | |
grp_models = [m for m in user_models if m.startswith(f"model_{user}_group_")] | |
clusters = utils.get_unique_topics() | |
if len(user_models) > 2 and scaffold_method != "tutorial" and user != "DemoUser": | |
# Highlight topics that have been tuned | |
tuned_clusters = [m.lstrip(f"model_{user}_") for m in user_models if (m != f"model_{user}" and not m.startswith(f"model_{user}_group_"))] | |
other_clusters = [c for c in clusters if c not in tuned_clusters] | |
tuned_options = { | |
"label": "Topics with tuned models", | |
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(tuned_clusters)], | |
} | |
other_options = { | |
"label": "All other topics", | |
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(other_clusters)], | |
} | |
clusters_options = [tuned_options, other_options] | |
else: | |
clusters_options = [{ | |
"label": "All auto-generated topics", | |
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(clusters)], | |
},] | |
if scaffold_method == "personal_cluster": | |
cluster_model = user_models[0] | |
personal_cluster_file = f"./data/personal_cluster_dfs/{cluster_model}.pkl" | |
if os.path.isfile(personal_cluster_file) and cluster_model != "": | |
print("audit_settings", personal_cluster_file, cluster_model) | |
topics_under_top, topics_over_top = utils.get_personal_clusters(cluster_model) | |
pers_cluster = topics_under_top + topics_over_top | |
pers_cluster_options = { | |
"label": "Personalized clusters", | |
"options": [{"value": i, "text": cluster} for i, cluster in enumerate(pers_cluster)], | |
} | |
clusters_options.insert(0, pers_cluster_options) | |
clusters_for_tuning = utils.get_large_clusters(min_n=150) | |
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element | |
context = { | |
"personalized_models": user_models, | |
"personalized_model_grp": grp_models, | |
"perf_metrics": ["Average rating difference", "Mean Absolute Error (MAE)", "Root Mean Squared Error (RMSE)", "Mean Squared Error (MSE)"], | |
"breakdown_categories": ['Topic', 'Toxicity Category', 'Toxicity Severity'], | |
"clusters": clusters_options, | |
"clusters_for_tuning": clusters_for_tuning_options, | |
"user": user, | |
} | |
return json.dumps(context) | |
######################################## | |
# ROUTE: /GET_AUDIT | |
def get_audit(): | |
pers_model = request.args.get("pers_model") | |
perf_metric = request.args.get("perf_metric") | |
breakdown_axis = request.args.get("breakdown_axis") | |
breakdown_sort = request.args.get("breakdown_sort") | |
n_topics = int(request.args.get("n_topics")) | |
error_type = request.args.get("error_type") | |
cur_user = request.args.get("cur_user") | |
topic_vis_method = request.args.get("topic_vis_method") | |
if topic_vis_method == "null": | |
topic_vis_method = "median" | |
if breakdown_sort == "difference": | |
sort_class_plot = True | |
elif breakdown_sort == "default": | |
sort_class_plot = False | |
else: | |
raise Exception("Invalid breakdown_sort value") | |
overall_perf = utils.show_overall_perf( | |
variant=pers_model, | |
error_type=error_type, | |
cur_user=cur_user, | |
breakdown_axis=breakdown_axis, | |
topic_vis_method=topic_vis_method, | |
) | |
results = { | |
"overall_perf": overall_perf, | |
} | |
return json.dumps(results) | |
######################################## | |
# ROUTE: /GET_CLUSTER_RESULTS | |
def get_cluster_results(): | |
pers_model = request.args.get("pers_model") | |
n_examples = int(request.args.get("n_examples")) | |
cluster = request.args.get("cluster") | |
example_sort = request.args.get("example_sort") | |
comparison_group = request.args.get("comparison_group") | |
topic_df_ids = request.args.getlist("topic_df_ids") | |
topic_df_ids = [int(val) for val in topic_df_ids[0].split(",") if val != ""] | |
search_type = request.args.get("search_type") | |
keyword = request.args.get("keyword") | |
n_neighbors = request.args.get("n_neighbors") | |
if n_neighbors != "null": | |
n_neighbors = int(n_neighbors) | |
neighbor_threshold = 0.6 | |
error_type = request.args.get("error_type") | |
use_model = request.args.get("use_model") == "true" | |
scaffold_method = request.args.get("scaffold_method") | |
# If user has a tuned model for this cluster, use that | |
cluster_model_file = f"./data/trained_models/{pers_model}_{cluster}.pkl" | |
if os.path.isfile(cluster_model_file): | |
pers_model = f"{pers_model}_{cluster}" | |
print(f"get_cluster_results using model {pers_model}") | |
other_ids = [] | |
perf_metric = "avg_diff" | |
sort_ascending = True if example_sort == "ascending" else False | |
topic_df = None | |
personal_cluster_file = f"./data/personal_cluster_dfs/{pers_model}.pkl" | |
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)): | |
# Handle personal clusters | |
with open(personal_cluster_file, "rb") as f: | |
topic_df = pickle.load(f) | |
topic_df = topic_df[(topic_df["topic"] == cluster)] | |
else: | |
# Regular handling | |
with open(f"data/preds_dfs/{pers_model}.pkl", "rb") as f: | |
topic_df = pickle.load(f) | |
if search_type == "cluster": | |
# Display examples with comment, your pred, and other users' pred | |
topic_df = topic_df[(topic_df["topic"] == cluster) | (topic_df["item_id"].isin(topic_df_ids))] | |
elif search_type == "neighbors": | |
neighbor_ids = utils.get_match(topic_df_ids, K=n_neighbors, threshold=neighbor_threshold, debug=False) | |
topic_df = topic_df[(topic_df["item_id"].isin(neighbor_ids)) | (topic_df["item_id"].isin(topic_df_ids))] | |
elif search_type == "keyword": | |
topic_df = topic_df[(topic_df["comment"].str.contains(keyword, case=False, regex=False)) | (topic_df["item_id"].isin(topic_df_ids))] | |
topic_df = topic_df.drop_duplicates() | |
print("len topic_df", len(topic_df)) | |
# Handle empty results | |
if len(topic_df) == 0: | |
results = { | |
"user_perf_rounded": None, | |
"user_direction": None, | |
"other_perf_rounded": None, | |
"other_direction": None, | |
"n_other_users": None, | |
"cluster_examples": None, | |
"odds_ratio": None, | |
"odds_ratio_explanation": None, | |
"topic_df_ids": [], | |
"cluster_overview_plot_json": None, | |
"cluster_comments": None, | |
} | |
return results | |
topic_df_ids = topic_df["item_id"].unique().tolist() | |
if (scaffold_method == "personal_cluster") and (os.path.isfile(personal_cluster_file)): | |
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df, error_type=error_type, n_comments=500) | |
else: | |
# Default case | |
topic_df_mod = topic_df.merge(comments_grouped_full_topic_cat, on="item_id", how="left", suffixes=('_', '_avg')) | |
if use_model: | |
# Display results with the model as a reference point | |
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster(topic_df_mod, error_type=error_type, n_comments=500) | |
else: | |
# Display results without a model | |
cluster_overview_plot_json, sampled_df = utils.plot_overall_vis_cluster_no_model(topic_df_mod, n_comments=500) | |
cluster_comments = utils.get_cluster_comments(sampled_df,error_type=error_type, num_examples=n_examples, use_model=use_model) # New version of cluster comment table | |
results = { | |
"topic_df_ids": topic_df_ids, | |
"cluster_overview_plot_json": json.loads(cluster_overview_plot_json), | |
"cluster_comments": cluster_comments, | |
} | |
return json.dumps(results) | |
######################################## | |
# ROUTE: /GET_GROUP_SIZE | |
def get_group_size(): | |
# Fetch info for initial labeling component | |
sel_gender = request.args.get("sel_gender") | |
sel_pol = request.args.get("sel_pol") | |
sel_relig = request.args.get("sel_relig") | |
sel_race = request.args.get("sel_race") | |
sel_lgbtq = request.args.get("sel_lgbtq") | |
if sel_race != "": | |
sel_race = sel_race.split(",") | |
_, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq) | |
context = { | |
"group_size": group_size, | |
} | |
return json.dumps(context) | |
######################################## | |
# ROUTE: /GET_GROUP_MODEL | |
def get_group_model(): | |
# Fetch info for initial labeling component | |
model_name = request.args.get("model_name") | |
user = request.args.get("user") | |
sel_gender = request.args.get("sel_gender") | |
sel_pol = request.args.get("sel_pol") | |
sel_relig = request.args.get("sel_relig") | |
sel_lgbtq = request.args.get("sel_lgbtq") | |
sel_race_orig = request.args.get("sel_race") | |
if sel_race_orig != "": | |
sel_race = sel_race_orig.split(",") | |
else: | |
sel_race = "" | |
start = time.time() | |
grp_df, group_size = utils.get_workers_in_group(sel_gender, sel_race, sel_relig, sel_pol, sel_lgbtq) | |
grp_ids = grp_df["worker_id"].tolist() | |
ratings_grp = utils.get_grp_model_labels( | |
comments_df=comments_grouped_full_topic_cat, | |
n_label_per_bin=BIN_DISTRIB, | |
score_bins=SCORE_BINS, | |
grp_ids=grp_ids, | |
) | |
# print("ratings_grp", ratings_grp) | |
# Modify model name | |
model_name = f"{model_name}_group_gender{sel_gender}_relig{sel_relig}_pol{sel_pol}_race{sel_race_orig}_lgbtq_{sel_lgbtq}" | |
label_dir = f"./data/labels/{model_name}" | |
# Create directory for labels if it doesn't yet exist | |
if not os.path.isdir(label_dir): | |
os.mkdir(label_dir) | |
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))]) | |
# Train group model | |
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings_grp, user) | |
duration = time.time() - start | |
print("Time to train/cache:", duration) | |
context = { | |
"group_size": group_size, | |
"mae": mae, | |
} | |
return json.dumps(context) | |
######################################## | |
# ROUTE: /GET_LABELING | |
def get_labeling(): | |
# Fetch info for initial labeling component | |
user = request.args.get("user") | |
clusters_for_tuning = utils.get_large_clusters(min_n=150) | |
clusters_for_tuning_options = [{"value": i, "text": cluster} for i, cluster in enumerate(clusters_for_tuning)] # Format for Svelecte UI element | |
model_name_suggestion = f"my_model" | |
context = { | |
"personalized_models": utils.get_all_model_names(user), | |
"model_name_suggestion": model_name_suggestion, | |
"clusters_for_tuning": clusters_for_tuning_options, | |
} | |
return json.dumps(context) | |
######################################## | |
# ROUTE: /GET_COMMENTS_TO_LABEL | |
N_LABEL_PER_BIN = 8 # 8 * 5 = 40 comments | |
BIN_DISTRIB = [4, 8, 16, 8, 4] | |
SCORE_BINS = [(0.0, 0.5), (0.5, 1.5), (1.5, 2.5), (2.5, 3.5), (3.5, 4.01)] | |
def get_comments_to_label(): | |
n = int(request.args.get("n")) | |
# Fetch examples to label | |
to_label_ids = utils.create_example_sets( | |
comments_df=comments_grouped_full_topic_cat, | |
n_label_per_bin=BIN_DISTRIB, | |
score_bins=SCORE_BINS, | |
keyword=None | |
) | |
random.shuffle(to_label_ids) # randomize to not prime users | |
to_label_ids = to_label_ids[:n] | |
ids_to_comments = utils.get_ids_to_comments() | |
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids] | |
context = { | |
"to_label": to_label, | |
} | |
return json.dumps(context) | |
######################################## | |
# ROUTE: /GET_COMMENTS_TO_LABEL_TOPIC | |
N_LABEL_PER_BIN_TOPIC = 2 # 2 * 5 = 10 comments | |
def get_comments_to_label_topic(): | |
# Fetch examples to label | |
topic = request.args.get("topic") | |
to_label_ids = utils.create_example_sets( | |
comments_df=comments_grouped_full_topic_cat, | |
# n_label_per_bin=N_LABEL_PER_BIN_TOPIC, | |
n_label_per_bin=BIN_DISTRIB, | |
score_bins=SCORE_BINS, | |
keyword=None, | |
topic=topic, | |
) | |
random.shuffle(to_label_ids) # randomize to not prime users | |
ids_to_comments = utils.get_ids_to_comments() | |
to_label = [ids_to_comments[comment_id] for comment_id in to_label_ids] | |
context = { | |
"to_label": to_label, | |
} | |
return json.dumps(context) | |
######################################## | |
# ROUTE: /GET_PERSONALIZED_MODEL | |
def get_personalized_model(): | |
model_name = request.args.get("model_name") | |
ratings_json = request.args.get("ratings") | |
mode = request.args.get("mode") | |
user = request.args.get("user") | |
ratings = json.loads(ratings_json) | |
print(ratings) | |
start = time.time() | |
label_dir = f"./data/labels/{model_name}" | |
# Create directory for labels if it doesn't yet exist | |
if not os.path.isdir(label_dir): | |
os.mkdir(label_dir) | |
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))]) | |
# Handle existing or new model cases | |
if mode == "view": | |
# Fetch prior model performance | |
if model_name not in utils.get_all_model_names(): | |
raise Exception(f"Model {model_name} does not exist") | |
else: | |
mae, mse, rmse, avg_diff, ratings_prev = utils.fetch_existing_data(model_name, last_label_i) | |
elif mode == "train": | |
# Train model and cache predictions using new labels | |
print("get_personalized_model train") | |
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user) | |
duration = time.time() - start | |
print("Time to train/cache:", duration) | |
perf_plot, mae_status = utils.plot_train_perf_results(model_name, mae) | |
perf_plot_json = perf_plot.to_json() | |
def round_metric(x): | |
return np.round(abs(x), 3) | |
results = { | |
"model_name": model_name, | |
"mae": round_metric(mae), | |
"mae_status": mae_status, | |
"mse": round_metric(mse), | |
"rmse": round_metric(rmse), | |
"avg_diff": round_metric(avg_diff), | |
"duration": duration, | |
"ratings_prev": ratings_prev, | |
"perf_plot_json": json.loads(perf_plot_json), | |
} | |
return json.dumps(results) | |
######################################## | |
# ROUTE: /GET_PERSONALIZED_MODEL_TOPIC | |
def get_personalized_model_topic(): | |
model_name = request.args.get("model_name") | |
ratings_json = request.args.get("ratings") | |
user = request.args.get("user") | |
ratings = json.loads(ratings_json) | |
topic = request.args.get("topic") | |
print(ratings) | |
start = time.time() | |
# Modify model name | |
model_name = f"{model_name}_{topic}" | |
label_dir = f"./data/labels/{model_name}" | |
# Create directory for labels if it doesn't yet exist | |
if not os.path.isdir(label_dir): | |
os.mkdir(label_dir) | |
last_label_i = len([name for name in os.listdir(label_dir) if (os.path.isfile(os.path.join(label_dir, name)) and name.endswith('.pkl'))]) | |
# Handle existing or new model cases | |
# Train model and cache predictions using new labels | |
print("get_personalized_model_topic train") | |
mae, mse, rmse, avg_diff, ratings_prev = utils.train_updated_model(model_name, last_label_i, ratings, user, topic=topic) | |
duration = time.time() - start | |
print("Time to train/cache:", duration) | |
def round_metric(x): | |
return np.round(abs(x), 3) | |
results = { | |
"success": "success", | |
"ratings_prev": ratings_prev, | |
"new_model_name": model_name, | |
} | |
return json.dumps(results) | |
######################################## | |
# ROUTE: /GET_REPORTS | |
def get_reports(): | |
cur_user = request.args.get("cur_user") | |
scaffold_method = request.args.get("scaffold_method") | |
model = request.args.get("model") | |
topic_vis_method = request.args.get("topic_vis_method") | |
if topic_vis_method == "null": | |
topic_vis_method = "fp_fn" | |
# Load reports for current user from stored files | |
report_dir = f"./data/user_reports" | |
user_file = os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl") | |
if not os.path.isfile(user_file): | |
if scaffold_method == "fixed": | |
reports = get_fixed_scaffold() | |
elif (scaffold_method == "personal" or scaffold_method == "personal_group" or scaffold_method == "personal_test"): | |
reports = get_personal_scaffold(model, topic_vis_method) | |
elif (scaffold_method == "personal_cluster"): | |
reports = get_personal_cluster_scaffold(model) | |
elif scaffold_method == "prompts": | |
reports = get_prompts_scaffold() | |
elif scaffold_method == "tutorial": | |
reports = get_tutorial_scaffold() | |
else: | |
# Prepare empty report | |
reports = [ | |
{ | |
"title": "", | |
"error_type": "", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
} | |
] | |
else: | |
# Load from pickle file | |
with open(user_file, "rb") as f: | |
reports = pickle.load(f) | |
results = { | |
"reports": reports, | |
} | |
return json.dumps(results) | |
def get_fixed_scaffold(): | |
return [ | |
{ | |
"title": "Topic: 6_jews_jew_jewish_rabbi", | |
"error_type": "System is under-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Topic: 73_troll_trolls_trolling_spammers", | |
"error_type": "System is over-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Topic: 66_mexicans_mexico_mexican_spanish", | |
"error_type": "System is under-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Topic: 89_cowards_coward_cowardly_brave", | |
"error_type": "System is over-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Topic: 63_disgusting_gross_toxic_thicc", | |
"error_type": "System is under-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
] | |
def get_empty_report(title, error_type): | |
return { | |
"title": f"Topic: {title}", | |
"error_type": error_type, | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
} | |
def get_tutorial_scaffold(): | |
return [ | |
{ | |
"title": "Topic: 79_idiot_dumb_stupid_dumber", | |
"error_type": "System is over-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
] | |
def get_personal_cluster_scaffold(model): | |
topics_under_top, topics_over_top = utils.get_personal_clusters(model) | |
report_under = [get_empty_report(topic, "System is under-sensitive") for topic in topics_under_top] | |
report_over = [get_empty_report(topic, "System is over-sensitive") for topic in topics_over_top] | |
reports = (report_under + report_over) | |
random.shuffle(reports) | |
return reports | |
def get_topic_errors(df, topic_vis_method, threshold=2): | |
topics = df["topic_"].unique().tolist() | |
topic_errors = {} | |
for topic in topics: | |
t_df = df[df["topic_"] == topic] | |
y_true = t_df["pred"].to_numpy() | |
y_pred = t_df["rating"].to_numpy() | |
if topic_vis_method == "mae": | |
t_err = mean_absolute_error(y_true, y_pred) | |
elif topic_vis_method == "mse": | |
t_err = mean_squared_error(y_true, y_pred) | |
elif topic_vis_method == "avg_diff": | |
t_err = np.mean(y_true - y_pred) | |
elif topic_vis_method == "fp_proportion": | |
y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()] | |
y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()] | |
try: | |
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() | |
except: | |
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0 | |
total = float(len(y_true)) | |
t_err = fp / total | |
elif topic_vis_method == "fn_proportion": | |
y_true = [0 if rating < threshold else 1 for rating in t_df["pred"].tolist()] | |
y_pred = [0 if rating < threshold else 1 for rating in t_df["rating"].tolist()] | |
try: | |
tn, fp, fn, tp = confusion_matrix(y_true, y_pred).ravel() | |
except: | |
tn, fp, fn, tp = [0, 0, 0, 0] # ignore; set error to 0 | |
total = float(len(y_true)) | |
t_err = fn / total | |
topic_errors[topic] = t_err | |
return topic_errors | |
def get_personal_scaffold(model, topic_vis_method, n_topics=200, n=5): | |
threshold = utils.get_toxic_threshold() | |
# Get topics with greatest amount of error | |
with open(f"./data/preds_dfs/{model}.pkl", "rb") as f: | |
preds_df = pickle.load(f) | |
preds_df_mod = preds_df.merge(utils.get_comments_grouped_full_topic_cat(), on="item_id", how="left", suffixes=('_', '_avg')) | |
preds_df_mod = preds_df_mod[preds_df_mod["user_id"] == "A"].sort_values(by=["item_id"]).reset_index() | |
preds_df_mod = preds_df_mod[preds_df_mod["topic_id_"] < n_topics] | |
if topic_vis_method == "median": | |
df = preds_df_mod.groupby(["topic_", "user_id"]).median().reset_index() | |
elif topic_vis_method == "mean": | |
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index() | |
elif topic_vis_method == "fp_fn": | |
for error_type in ["fn_proportion", "fp_proportion"]: | |
topic_errors = get_topic_errors(preds_df_mod, error_type) | |
preds_df_mod[error_type] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()] | |
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index() | |
else: | |
# Get error for each topic | |
topic_errors = get_topic_errors(preds_df_mod, topic_vis_method) | |
preds_df_mod[topic_vis_method] = [topic_errors[topic] for topic in preds_df_mod["topic_"].tolist()] | |
df = preds_df_mod.groupby(["topic_", "user_id"]).mean().reset_index() | |
# Get system error | |
df = df[(df["topic_"] != "53_maiareficco_kallystas_dyisisitmanila_tractorsazi") & (df["topic_"] != "79_idiot_dumb_stupid_dumber")] | |
if topic_vis_method == "median" or topic_vis_method == "mean": | |
df["error_magnitude"] = [utils.get_error_magnitude(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] | |
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] | |
df_under = df[df["error_type"] == "System is under-sensitive"] | |
df_under = df_under.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first | |
report_under = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_under.iterrows()] | |
df_over = df[df["error_type"] == "System is over-sensitive"] | |
df_over = df_over.sort_values(by=["error_magnitude"], ascending=False).head(n) # surface largest errors first | |
report_over = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df_over.iterrows()] | |
# Set up reports | |
# return [get_empty_report(row["topic_"], row["error_type"]) for index, row in df.iterrows()] | |
reports = (report_under + report_over) | |
random.shuffle(reports) | |
elif topic_vis_method == "fp_fn": | |
df_under = df.sort_values(by=["fn_proportion"], ascending=False).head(n) | |
df_under = df_under[df_under["fn_proportion"] > 0] | |
report_under = [get_empty_report(row["topic_"], "System is under-sensitive") for _, row in df_under.iterrows()] | |
df_over = df.sort_values(by=["fp_proportion"], ascending=False).head(n) | |
df_over = df_over[df_over["fp_proportion"] > 0] | |
report_over = [get_empty_report(row["topic_"], "System is over-sensitive") for _, row in df_over.iterrows()] | |
reports = (report_under + report_over) | |
random.shuffle(reports) | |
else: | |
df = df.sort_values(by=[topic_vis_method], ascending=False).head(n * 2) | |
df["error_type"] = [utils.get_error_type_radio(sys, user, threshold) for sys, user in zip(df["rating"].tolist(), df["pred"].tolist())] | |
reports = [get_empty_report(row["topic_"], row["error_type"]) for _, row in df.iterrows()] | |
return reports | |
def get_prompts_scaffold(): | |
return [ | |
{ | |
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as toxic?", | |
"error_type": "System is over-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Are there terms that are used in your identity group or community that tend to be flagged incorrectly as non-toxic?", | |
"error_type": "System is under-sensitive", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Are there certain ways that your community tends to be targeted by outsiders?", | |
"error_type": "", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Are there other communities whose content should be very similar to your community's? Verify that this content is treated similarly by the system.", | |
"error_type": "", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
{ | |
"title": "Are there ways that you've seen individuals in your community actively try to thwart the rules of automated content moderation systems? Check whether these strategies work here.", | |
"error_type": "", | |
"evidence": [], | |
"text_entry": "", | |
"complete_status": False, | |
}, | |
] | |
######################################## | |
# ROUTE: /SAVE_REPORTS | |
def save_reports(): | |
cur_user = request.args.get("cur_user") | |
reports_json = request.args.get("reports") | |
reports = json.loads(reports_json) | |
scaffold_method = request.args.get("scaffold_method") | |
# Save reports for current user to stored files | |
report_dir = f"./data/user_reports" | |
# Save to pickle file | |
with open(os.path.join(report_dir, f"{cur_user}_{scaffold_method}.pkl"), "wb") as f: | |
pickle.dump(reports, f) | |
results = { | |
"status": "success", | |
} | |
return json.dumps(results) | |
######################################## | |
# ROUTE: /GET_EXPLORE_EXAMPLES | |
def get_explore_examples(): | |
threshold = utils.get_toxic_threshold() | |
n_examples = int(request.args.get("n_examples")) | |
# Get sample of examples | |
df = utils.get_comments_grouped_full_topic_cat().sample(n=n_examples) | |
df["system_decision"] = [utils.get_decision(rating, threshold) for rating in df["rating"].tolist()] | |
df["system_color"] = [utils.get_user_color(sys, threshold) for sys in df["rating"].tolist()] # get cell colors | |
ex_json = df.to_json(orient="records") | |
results = { | |
"examples": ex_json, | |
} | |
return json.dumps(results) | |
if __name__ == "__main__": | |
app.run(debug=True, port=5001) | |