File size: 15,253 Bytes
eca81ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50170f4
eca81ab
 
 
 
 
 
 
 
 
 
 
 
50170f4
eca81ab
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
import streamlit as st
import time
import random
import json
from datetime import datetime
import pytz
import platform
import uuid
import extra_streamlit_components as stx
from io import BytesIO
from PIL import Image
import base64
import cv2
import requests
from moviepy.editor import VideoFileClip
from gradio_client import Client
from openai import OpenAI
import openai
import os
from collections import deque
import numpy as np
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Set page config
st.set_page_config(page_title="Personalized Real-Time Chat", page_icon="💬", layout="wide")

# Initialize cookie manager
cookie_manager = stx.CookieManager()

# File to store chat history and user data
CHAT_FILE = "chat_history.txt"

# Function to save chat history and user data to file
def save_data():
    with open(CHAT_FILE, 'w') as f:
        json.dump({
            'messages': st.session_state.messages,
            'users': st.session_state.users
        }, f)

# Function to load chat history and user data from file
def load_data():
    try:
        with open(CHAT_FILE, 'r') as f:
            data = json.load(f)
            st.session_state.messages = data['messages']
            st.session_state.users = data['users']
    except FileNotFoundError:
        st.session_state.messages = []
        st.session_state.users = []

# Load data at the start
load_data()

# Function to get or create user
def get_or_create_user():
    user_id = cookie_manager.get(cookie='user_id')
    if not user_id:
        user_id = str(uuid.uuid4())
        cookie_manager.set('user_id', user_id)
    
    user = next((u for u in st.session_state.users if u['id'] == user_id), None)
    if not user:
        user = {
            'id': user_id,
            'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']),
            'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}"
        }
        st.session_state.users.append(user)
        save_data()
    
    return user

# Initialize session state
if 'messages' not in st.session_state:
    st.session_state.messages = []
if 'users' not in st.session_state:
    st.session_state.users = []
if 'current_user' not in st.session_state:
    st.session_state.current_user = get_or_create_user()

# Initialize OpenAI client
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.organization = os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key=openai.api_key, organization=openai.organization)
GPT4O_MODEL = "gpt-4o-2024-05-13"

# Initialize HuggingFace client
hf_client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1",
    api_key=os.environ.get('API_KEY')
)

# Create supported models
model_links = {
    "GPT-4o": GPT4O_MODEL,
    "Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
    "Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
    "Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct",
    "Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
    "C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus",
    "Aya-23-35B": "CohereForAI/aya-23-35B",
    "Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
    "Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1",
    "Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat",
    "Gemma-2-27b-it": "google/gemma-2-27b-it",
    "Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf",
    "Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
    "Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
    "Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
    "Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
    "Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
    "Gemma-1.1-7b-it": "google/gemma-1.1-7b-it",
    "Gemma-1.1-2b-it": "google/gemma-1.1-2b-it",
    "Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta",
    "Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha",
    "Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
    "Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct",
}

# Function to reset conversation
def reset_conversation():
    st.session_state.conversation = []
    st.session_state.messages = []

# Function to process text with selected model
def process_text(user_name, text_input, selected_model, temp_values):
    timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
    st.session_state.messages.append({"user": user_name, "message": text_input, "timestamp": timestamp})
    
    with st.chat_message(user_name):
        st.markdown(f"{user_name} ({timestamp}): {text_input}")
    
    with st.chat_message("Assistant"):
        if selected_model == "GPT-4o":
            completion = client.chat.completions.create(
                model=GPT4O_MODEL,
                messages=[
                    {"role": "user", "content": m["message"]}
                    for m in st.session_state.messages
                ],
                stream=True,
                temperature=temp_values
            )
            return_text = st.write_stream(completion)
        else:
            try:
                stream = hf_client.chat.completions.create(
                    model=model_links[selected_model],
                    messages=[
                        {"role": m["role"], "content": m["content"]}
                        for m in st.session_state.messages
                    ],
                    temperature=temp_values,
                    stream=True,
                    max_tokens=3000,
                )
                return_text = st.write_stream(stream)
            except Exception as e:
                return_text = f"Error: {str(e)}"
                st.error(return_text)
        
        st.markdown(f"Assistant ({timestamp}): {return_text}")
        filename = generate_filename(text_input, "md")
        create_file(filename, text_input, return_text, user_name, timestamp)
        st.session_state.messages.append({"user": "Assistant", "message": return_text, "timestamp": timestamp})
        save_data()

# Function to process image (using GPT-4o)
def process_image(user_name, image_input, user_prompt):
    image = Image.open(BytesIO(image_input))
    base64_image = base64.b64encode(image_input).decode("utf-8")
    
    response = client.chat.completions.create(
        model=GPT4O_MODEL,
        messages=[
            {"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
            {"role": "user", "content": [
                {"type": "text", "text": user_prompt},
                {"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
            ]}
        ],
        temperature=0.0,
    )
    image_response = response.choices[0].message.content
    
    timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
    st.session_state.messages.append({"user": user_name, "message": image_response, "timestamp": timestamp})
    
    with st.chat_message(user_name):
        st.image(image)
        st.markdown(f"{user_name} ({timestamp}): {user_prompt}")
    
    with st.chat_message("Assistant"):
        st.markdown(image_response)
    
    filename_md = generate_filename(user_prompt, "md")
    create_file(filename_md, user_prompt, image_response, user_name, timestamp)
    save_data()
    return image_response

# Function to process audio (using GPT-4o for transcription)
def process_audio(user_name, audio_input, text_input):
    if audio_input:
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=audio_input,
        )
        timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
        st.session_state.messages.append({"user": user_name, "message": transcription.text, "timestamp": timestamp})
        with st.chat_message(user_name):
            st.markdown(f"{user_name} ({timestamp}): {transcription.text}")
        with st.chat_message("Assistant"):
            st.markdown(transcription.text)
            filename = generate_filename(transcription.text, "wav")
            create_file(filename, text_input, transcription.text, user_name, timestamp)
            st.session_state.messages.append({"user": "Assistant", "message": transcription.text, "timestamp": timestamp})
            save_data()

# Function to process video (using GPT-4o)
def process_video(user_name, video_input, user_prompt):
    if isinstance(video_input, str):
        with open(video_input, "rb") as video_file:
            video_input = video_file.read()
    base64Frames, audio_path = extract_video_frames(video_input)
    transcript = process_audio_for_video(video_input)
    response = client.chat.completions.create(
        model=GPT4O_MODEL,
        messages=[
            {"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
            {"role": "user", "content": [
                "These are the frames from the video.",
                *map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
                {"type": "text", "text": f"The audio transcription is: {transcript}"},
                {"type": "text", "text": user_prompt}
            ]}
        ],
        temperature=0,
    )
    video_response = response.choices[0].message.content
    st.markdown(video_response)
    timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
    filename_md = generate_filename(user_prompt, "md")
    create_file(filename_md, user_prompt, video_response, user_name, timestamp)
    st.session_state.messages.append({"user": user_name, "message": video_response, "timestamp": timestamp})
    save_data()
    return video_response

# Main function for each column
def main_column(column_name):
    st.markdown(f"##### {column_name}")
    selected_model = st.selectbox(f"Select Model for {column_name}", list(model_links.keys()), key=f"{column_name}_model")
    temp_values = st.slider(f'Select a temperature value for {column_name}', 0.0, 1.0, (0.5), key=f"{column_name}_temp")
    
    option = st.selectbox(f"Select an option for {column_name}", ("Text", "Image", "Audio", "Video"), key=f"{column_name}_option")
    
    if option == "Text":
        text_input = st.text_input(f"Enter your text for {column_name}:", key=f"{column_name}_text")
        if text_input:
            process_text(st.session_state.current_user['name'], text_input, selected_model, temp_values)
    elif option == "Image":
        text_input = st.text_input(f"Enter text prompt to use with Image context for {column_name}:", key=f"{column_name}_image_text")
        uploaded_files = st.file_uploader(f"Upload images for {column_name}", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key=f"{column_name}_image_upload")
        for image_input in uploaded_files:
            image_bytes = image_input.read()
            process_image(st.session_state.current_user['name'], image_bytes, text_input)
    elif option == "Audio":
        text_input = st.text_input(f"Enter text prompt to use with Audio context for {column_name}:", key=f"{column_name}_audio_text")
        uploaded_files = st.file_uploader(f"Upload an audio file for {column_name}", type=["mp3", "wav"], accept_multiple_files=True, key=f"{column_name}_audio_upload")
        for audio_input in uploaded_files:
            process_audio(st.session_state.current_user['name'], audio_input, text_input)
    elif option == "Video":
        video_input = st.file_uploader(f"Upload a video file for {column_name}", type=["mp4"], key=f"{column_name}_video_upload")
        text_input = st.text_input(f"Enter text prompt to use with Video context for {column_name}:", key=f"{column_name}_video_text")
        if video_input and text_input:
            process_video(st.session_state.current_user['name'], video_input, text_input)

# Main Streamlit app
st.title("Multiuser Chat with Llama 3.1 and GPT-4o")

# Sidebar
with st.sidebar:
    st.title("User Info")
    st.write(f"Current User: {st.session_state.current_user['name']}")
    st.write(f"Browser: {st.session_state.current_user['browser']}")
    
    new_name = st.text_input("Change your name:")
    if st.button("Update Name"):
        if new_name:
            for user in st.session_state.users:
                if user['id'] == st.session_state.current_user['id']:
                    user['name'] = new_name
                    st.session_state.current_user['name'] = new_name
                    save_data()
                    st.success(f"Name updated to {new_name}")
                    break
    
    st.title("Active Users")
    for user in st.session_state.users:
        st.write(f"{user['name']} ({user['browser']})")
    
    if st.button('Reset Chat'):
        reset_conversation()

# Create two columns
col1, col2 = st.columns(2)

# Run main function for each column
with col1:
    main_column("Column 1")

with col2:
    main_column("Column 2")

# Function to generate filenames
def generate_filename(prompt, file_type):
    central = pytz.timezone('US/Central')
    safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
    replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
    safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
    return f"{safe_date_time}_{safe_prompt}.{file_type}"

# Function to create files
def create_file(filename, prompt, response, user_name, timestamp):
    with open(filename, "w", encoding="utf-8") as f:
        f.write(f"User: {user_name}\nTimestamp: {timestamp}\n\nPrompt:\n{prompt}\n\nResponse:\n{response}")

# Function to extract video frames
def extract_video_frames(video_path, seconds_per_frame=2):
    base64Frames = []
    video = cv2.VideoCapture(video_path)
    total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
    fps = video.get(cv2.CAP_PROP_FPS)
    frames_to_skip = int(fps * seconds_per_frame)
    curr_frame = 0
    while curr_frame < total_frames - 1:
        video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
        success, frame = video.read()
        if not success:
            break
        _, buffer = cv2.imencode(".jpg", frame)
        base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
        curr_frame += frames_to_skip
    video.release()
    return base64Frames, None

# Function to process audio for video
def process_audio_for_video(video_input):
    try:
        transcription = client.audio.transcriptions.create(
            model="whisper-1",
            file=video_input,
        )
        return transcription.text
    except:
        return ''

# Run the Streamlit app
if __name__ == "__main__":
    st.markdown("*Generated content may be inaccurate or false.*")
    st.markdown("\n...")