Spaces:
Sleeping
Sleeping
File size: 15,253 Bytes
eca81ab 50170f4 eca81ab 50170f4 eca81ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 |
import streamlit as st
import time
import random
import json
from datetime import datetime
import pytz
import platform
import uuid
import extra_streamlit_components as stx
from io import BytesIO
from PIL import Image
import base64
import cv2
import requests
from moviepy.editor import VideoFileClip
from gradio_client import Client
from openai import OpenAI
import openai
import os
from collections import deque
import numpy as np
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Set page config
st.set_page_config(page_title="Personalized Real-Time Chat", page_icon="💬", layout="wide")
# Initialize cookie manager
cookie_manager = stx.CookieManager()
# File to store chat history and user data
CHAT_FILE = "chat_history.txt"
# Function to save chat history and user data to file
def save_data():
with open(CHAT_FILE, 'w') as f:
json.dump({
'messages': st.session_state.messages,
'users': st.session_state.users
}, f)
# Function to load chat history and user data from file
def load_data():
try:
with open(CHAT_FILE, 'r') as f:
data = json.load(f)
st.session_state.messages = data['messages']
st.session_state.users = data['users']
except FileNotFoundError:
st.session_state.messages = []
st.session_state.users = []
# Load data at the start
load_data()
# Function to get or create user
def get_or_create_user():
user_id = cookie_manager.get(cookie='user_id')
if not user_id:
user_id = str(uuid.uuid4())
cookie_manager.set('user_id', user_id)
user = next((u for u in st.session_state.users if u['id'] == user_id), None)
if not user:
user = {
'id': user_id,
'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']),
'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}"
}
st.session_state.users.append(user)
save_data()
return user
# Initialize session state
if 'messages' not in st.session_state:
st.session_state.messages = []
if 'users' not in st.session_state:
st.session_state.users = []
if 'current_user' not in st.session_state:
st.session_state.current_user = get_or_create_user()
# Initialize OpenAI client
openai.api_key = os.getenv('OPENAI_API_KEY')
openai.organization = os.getenv('OPENAI_ORG_ID')
client = OpenAI(api_key=openai.api_key, organization=openai.organization)
GPT4O_MODEL = "gpt-4o-2024-05-13"
# Initialize HuggingFace client
hf_client = OpenAI(
base_url="https://api-inference.huggingface.co/v1",
api_key=os.environ.get('API_KEY')
)
# Create supported models
model_links = {
"GPT-4o": GPT4O_MODEL,
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8",
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct",
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct",
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus",
"Aya-23-35B": "CohereForAI/aya-23-35B",
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1",
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1",
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1",
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat",
"Gemma-2-27b-it": "google/gemma-2-27b-it",
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf",
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf",
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf",
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1",
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2",
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3",
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it",
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it",
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta",
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha",
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct",
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct",
}
# Function to reset conversation
def reset_conversation():
st.session_state.conversation = []
st.session_state.messages = []
# Function to process text with selected model
def process_text(user_name, text_input, selected_model, temp_values):
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
st.session_state.messages.append({"user": user_name, "message": text_input, "timestamp": timestamp})
with st.chat_message(user_name):
st.markdown(f"{user_name} ({timestamp}): {text_input}")
with st.chat_message("Assistant"):
if selected_model == "GPT-4o":
completion = client.chat.completions.create(
model=GPT4O_MODEL,
messages=[
{"role": "user", "content": m["message"]}
for m in st.session_state.messages
],
stream=True,
temperature=temp_values
)
return_text = st.write_stream(completion)
else:
try:
stream = hf_client.chat.completions.create(
model=model_links[selected_model],
messages=[
{"role": m["role"], "content": m["content"]}
for m in st.session_state.messages
],
temperature=temp_values,
stream=True,
max_tokens=3000,
)
return_text = st.write_stream(stream)
except Exception as e:
return_text = f"Error: {str(e)}"
st.error(return_text)
st.markdown(f"Assistant ({timestamp}): {return_text}")
filename = generate_filename(text_input, "md")
create_file(filename, text_input, return_text, user_name, timestamp)
st.session_state.messages.append({"user": "Assistant", "message": return_text, "timestamp": timestamp})
save_data()
# Function to process image (using GPT-4o)
def process_image(user_name, image_input, user_prompt):
image = Image.open(BytesIO(image_input))
base64_image = base64.b64encode(image_input).decode("utf-8")
response = client.chat.completions.create(
model=GPT4O_MODEL,
messages=[
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."},
{"role": "user", "content": [
{"type": "text", "text": user_prompt},
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}}
]}
],
temperature=0.0,
)
image_response = response.choices[0].message.content
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
st.session_state.messages.append({"user": user_name, "message": image_response, "timestamp": timestamp})
with st.chat_message(user_name):
st.image(image)
st.markdown(f"{user_name} ({timestamp}): {user_prompt}")
with st.chat_message("Assistant"):
st.markdown(image_response)
filename_md = generate_filename(user_prompt, "md")
create_file(filename_md, user_prompt, image_response, user_name, timestamp)
save_data()
return image_response
# Function to process audio (using GPT-4o for transcription)
def process_audio(user_name, audio_input, text_input):
if audio_input:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=audio_input,
)
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
st.session_state.messages.append({"user": user_name, "message": transcription.text, "timestamp": timestamp})
with st.chat_message(user_name):
st.markdown(f"{user_name} ({timestamp}): {transcription.text}")
with st.chat_message("Assistant"):
st.markdown(transcription.text)
filename = generate_filename(transcription.text, "wav")
create_file(filename, text_input, transcription.text, user_name, timestamp)
st.session_state.messages.append({"user": "Assistant", "message": transcription.text, "timestamp": timestamp})
save_data()
# Function to process video (using GPT-4o)
def process_video(user_name, video_input, user_prompt):
if isinstance(video_input, str):
with open(video_input, "rb") as video_file:
video_input = video_file.read()
base64Frames, audio_path = extract_video_frames(video_input)
transcript = process_audio_for_video(video_input)
response = client.chat.completions.create(
model=GPT4O_MODEL,
messages=[
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"},
{"role": "user", "content": [
"These are the frames from the video.",
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames),
{"type": "text", "text": f"The audio transcription is: {transcript}"},
{"type": "text", "text": user_prompt}
]}
],
temperature=0,
)
video_response = response.choices[0].message.content
st.markdown(video_response)
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z')
filename_md = generate_filename(user_prompt, "md")
create_file(filename_md, user_prompt, video_response, user_name, timestamp)
st.session_state.messages.append({"user": user_name, "message": video_response, "timestamp": timestamp})
save_data()
return video_response
# Main function for each column
def main_column(column_name):
st.markdown(f"##### {column_name}")
selected_model = st.selectbox(f"Select Model for {column_name}", list(model_links.keys()), key=f"{column_name}_model")
temp_values = st.slider(f'Select a temperature value for {column_name}', 0.0, 1.0, (0.5), key=f"{column_name}_temp")
option = st.selectbox(f"Select an option for {column_name}", ("Text", "Image", "Audio", "Video"), key=f"{column_name}_option")
if option == "Text":
text_input = st.text_input(f"Enter your text for {column_name}:", key=f"{column_name}_text")
if text_input:
process_text(st.session_state.current_user['name'], text_input, selected_model, temp_values)
elif option == "Image":
text_input = st.text_input(f"Enter text prompt to use with Image context for {column_name}:", key=f"{column_name}_image_text")
uploaded_files = st.file_uploader(f"Upload images for {column_name}", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key=f"{column_name}_image_upload")
for image_input in uploaded_files:
image_bytes = image_input.read()
process_image(st.session_state.current_user['name'], image_bytes, text_input)
elif option == "Audio":
text_input = st.text_input(f"Enter text prompt to use with Audio context for {column_name}:", key=f"{column_name}_audio_text")
uploaded_files = st.file_uploader(f"Upload an audio file for {column_name}", type=["mp3", "wav"], accept_multiple_files=True, key=f"{column_name}_audio_upload")
for audio_input in uploaded_files:
process_audio(st.session_state.current_user['name'], audio_input, text_input)
elif option == "Video":
video_input = st.file_uploader(f"Upload a video file for {column_name}", type=["mp4"], key=f"{column_name}_video_upload")
text_input = st.text_input(f"Enter text prompt to use with Video context for {column_name}:", key=f"{column_name}_video_text")
if video_input and text_input:
process_video(st.session_state.current_user['name'], video_input, text_input)
# Main Streamlit app
st.title("Multiuser Chat with Llama 3.1 and GPT-4o")
# Sidebar
with st.sidebar:
st.title("User Info")
st.write(f"Current User: {st.session_state.current_user['name']}")
st.write(f"Browser: {st.session_state.current_user['browser']}")
new_name = st.text_input("Change your name:")
if st.button("Update Name"):
if new_name:
for user in st.session_state.users:
if user['id'] == st.session_state.current_user['id']:
user['name'] = new_name
st.session_state.current_user['name'] = new_name
save_data()
st.success(f"Name updated to {new_name}")
break
st.title("Active Users")
for user in st.session_state.users:
st.write(f"{user['name']} ({user['browser']})")
if st.button('Reset Chat'):
reset_conversation()
# Create two columns
col1, col2 = st.columns(2)
# Run main function for each column
with col1:
main_column("Column 1")
with col2:
main_column("Column 2")
# Function to generate filenames
def generate_filename(prompt, file_type):
central = pytz.timezone('US/Central')
safe_date_time = datetime.now(central).strftime("%m%d_%H%M")
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_")
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90]
return f"{safe_date_time}_{safe_prompt}.{file_type}"
# Function to create files
def create_file(filename, prompt, response, user_name, timestamp):
with open(filename, "w", encoding="utf-8") as f:
f.write(f"User: {user_name}\nTimestamp: {timestamp}\n\nPrompt:\n{prompt}\n\nResponse:\n{response}")
# Function to extract video frames
def extract_video_frames(video_path, seconds_per_frame=2):
base64Frames = []
video = cv2.VideoCapture(video_path)
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
fps = video.get(cv2.CAP_PROP_FPS)
frames_to_skip = int(fps * seconds_per_frame)
curr_frame = 0
while curr_frame < total_frames - 1:
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame)
success, frame = video.read()
if not success:
break
_, buffer = cv2.imencode(".jpg", frame)
base64Frames.append(base64.b64encode(buffer).decode("utf-8"))
curr_frame += frames_to_skip
video.release()
return base64Frames, None
# Function to process audio for video
def process_audio_for_video(video_input):
try:
transcription = client.audio.transcriptions.create(
model="whisper-1",
file=video_input,
)
return transcription.text
except:
return ''
# Run the Streamlit app
if __name__ == "__main__":
st.markdown("*Generated content may be inaccurate or false.*")
st.markdown("\n...") |