Spaces:
Sleeping
Sleeping
import streamlit as st | |
import time | |
import random | |
import json | |
from datetime import datetime | |
import pytz | |
import platform | |
import uuid | |
import extra_streamlit_components as stx | |
from io import BytesIO | |
from PIL import Image | |
import base64 | |
import cv2 | |
import requests | |
from moviepy.editor import VideoFileClip | |
from gradio_client import Client | |
from openai import OpenAI | |
import openai | |
import os | |
from collections import deque | |
import numpy as np | |
from dotenv import load_dotenv | |
# Load environment variables | |
load_dotenv() | |
# Set page config | |
st.set_page_config(page_title="Personalized Real-Time Chat", page_icon="💬", layout="wide") | |
# Initialize cookie manager | |
cookie_manager = stx.CookieManager() | |
# File to store chat history and user data | |
CHAT_FILE = "chat_history.txt" | |
# Function to save chat history and user data to file | |
def save_data(): | |
with open(CHAT_FILE, 'w') as f: | |
json.dump({ | |
'messages': st.session_state.messages, | |
'users': st.session_state.users | |
}, f) | |
# Function to load chat history and user data from file | |
def load_data(): | |
try: | |
with open(CHAT_FILE, 'r') as f: | |
data = json.load(f) | |
st.session_state.messages = data['messages'] | |
st.session_state.users = data['users'] | |
except FileNotFoundError: | |
st.session_state.messages = [] | |
st.session_state.users = [] | |
# Load data at the start | |
load_data() | |
# Function to get or create user | |
def get_or_create_user(): | |
user_id = cookie_manager.get(cookie='user_id') | |
if not user_id: | |
user_id = str(uuid.uuid4()) | |
cookie_manager.set('user_id', user_id) | |
user = next((u for u in st.session_state.users if u['id'] == user_id), None) | |
if not user: | |
user = { | |
'id': user_id, | |
'name': random.choice(['Alice', 'Bob', 'Charlie', 'David', 'Eve', 'Frank', 'Grace', 'Henry']), | |
'browser': f"{platform.system()} - {st.session_state.get('browser_info', 'Unknown')}" | |
} | |
st.session_state.users.append(user) | |
save_data() | |
return user | |
# Initialize session state | |
if 'messages' not in st.session_state: | |
st.session_state.messages = [] | |
if 'users' not in st.session_state: | |
st.session_state.users = [] | |
if 'current_user' not in st.session_state: | |
st.session_state.current_user = get_or_create_user() | |
# Initialize OpenAI client | |
openai.api_key = os.getenv('OPENAI_API_KEY') | |
openai.organization = os.getenv('OPENAI_ORG_ID') | |
client = OpenAI(api_key=openai.api_key, organization=openai.organization) | |
GPT4O_MODEL = "gpt-4o-2024-05-13" | |
# Initialize HuggingFace client | |
hf_client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1", | |
api_key=os.environ.get('API_KEY') | |
) | |
# Create supported models | |
model_links = { | |
"GPT-4o": GPT4O_MODEL, | |
"Meta-Llama-3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", | |
"Meta-Llama-3.1-405B-Instruct-FP8": "meta-llama/Meta-Llama-3.1-405B-Instruct-FP8", | |
"Meta-Llama-3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct", | |
"Meta-Llama-3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
"Meta-Llama-3-70B-Instruct": "meta-llama/Meta-Llama-3-70B-Instruct", | |
"Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct", | |
"C4ai-command-r-plus": "CohereForAI/c4ai-command-r-plus", | |
"Aya-23-35B": "CohereForAI/aya-23-35B", | |
"Zephyr-orpo-141b-A35b-v0.1": "HuggingFaceH4/zephyr-orpo-141b-A35b-v0.1", | |
"Mixtral-8x7B-Instruct-v0.1": "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
"Codestral-22B-v0.1": "mistralai/Codestral-22B-v0.1", | |
"Nous-Hermes-2-Mixtral-8x7B-DPO": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
"Yi-1.5-34B-Chat": "01-ai/Yi-1.5-34B-Chat", | |
"Gemma-2-27b-it": "google/gemma-2-27b-it", | |
"Meta-Llama-2-70B-Chat-HF": "meta-llama/Llama-2-70b-chat-hf", | |
"Meta-Llama-2-7B-Chat-HF": "meta-llama/Llama-2-7b-chat-hf", | |
"Meta-Llama-2-13B-Chat-HF": "meta-llama/Llama-2-13b-chat-hf", | |
"Mistral-7B-Instruct-v0.1": "mistralai/Mistral-7B-Instruct-v0.1", | |
"Mistral-7B-Instruct-v0.2": "mistralai/Mistral-7B-Instruct-v0.2", | |
"Mistral-7B-Instruct-v0.3": "mistralai/Mistral-7B-Instruct-v0.3", | |
"Gemma-1.1-7b-it": "google/gemma-1.1-7b-it", | |
"Gemma-1.1-2b-it": "google/gemma-1.1-2b-it", | |
"Zephyr-7B-Beta": "HuggingFaceH4/zephyr-7b-beta", | |
"Zephyr-7B-Alpha": "HuggingFaceH4/zephyr-7b-alpha", | |
"Phi-3-mini-128k-instruct": "microsoft/Phi-3-mini-128k-instruct", | |
"Phi-3-mini-4k-instruct": "microsoft/Phi-3-mini-4k-instruct", | |
} | |
# Function to reset conversation | |
def reset_conversation(): | |
st.session_state.conversation = [] | |
st.session_state.messages = [] | |
# Function to process text with selected model | |
def process_text(user_name, text_input, selected_model, temp_values): | |
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') | |
st.session_state.messages.append({"user": user_name, "message": text_input, "timestamp": timestamp}) | |
with st.chat_message(user_name): | |
st.markdown(f"{user_name} ({timestamp}): {text_input}") | |
with st.chat_message("Assistant"): | |
if selected_model == "GPT-4o": | |
completion = client.chat.completions.create( | |
model=GPT4O_MODEL, | |
messages=[ | |
{"role": "user", "content": m["message"]} | |
for m in st.session_state.messages | |
], | |
stream=True, | |
temperature=temp_values | |
) | |
return_text = st.write_stream(completion) | |
else: | |
try: | |
stream = hf_client.chat.completions.create( | |
model=model_links[selected_model], | |
messages=[ | |
{"role": m["role"], "content": m["content"]} | |
for m in st.session_state.messages | |
], | |
temperature=temp_values, | |
stream=True, | |
max_tokens=3000, | |
) | |
return_text = st.write_stream(stream) | |
except Exception as e: | |
return_text = f"Error: {str(e)}" | |
st.error(return_text) | |
st.markdown(f"Assistant ({timestamp}): {return_text}") | |
filename = generate_filename(text_input, "md") | |
create_file(filename, text_input, return_text, user_name, timestamp) | |
st.session_state.messages.append({"user": "Assistant", "message": return_text, "timestamp": timestamp}) | |
save_data() | |
# Function to process image (using GPT-4o) | |
def process_image(user_name, image_input, user_prompt): | |
image = Image.open(BytesIO(image_input)) | |
base64_image = base64.b64encode(image_input).decode("utf-8") | |
response = client.chat.completions.create( | |
model=GPT4O_MODEL, | |
messages=[ | |
{"role": "system", "content": "You are a helpful assistant that responds in Markdown."}, | |
{"role": "user", "content": [ | |
{"type": "text", "text": user_prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{base64_image}"}} | |
]} | |
], | |
temperature=0.0, | |
) | |
image_response = response.choices[0].message.content | |
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') | |
st.session_state.messages.append({"user": user_name, "message": image_response, "timestamp": timestamp}) | |
with st.chat_message(user_name): | |
st.image(image) | |
st.markdown(f"{user_name} ({timestamp}): {user_prompt}") | |
with st.chat_message("Assistant"): | |
st.markdown(image_response) | |
filename_md = generate_filename(user_prompt, "md") | |
create_file(filename_md, user_prompt, image_response, user_name, timestamp) | |
save_data() | |
return image_response | |
# Function to process audio (using GPT-4o for transcription) | |
def process_audio(user_name, audio_input, text_input): | |
if audio_input: | |
transcription = client.audio.transcriptions.create( | |
model="whisper-1", | |
file=audio_input, | |
) | |
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') | |
st.session_state.messages.append({"user": user_name, "message": transcription.text, "timestamp": timestamp}) | |
with st.chat_message(user_name): | |
st.markdown(f"{user_name} ({timestamp}): {transcription.text}") | |
with st.chat_message("Assistant"): | |
st.markdown(transcription.text) | |
filename = generate_filename(transcription.text, "wav") | |
create_file(filename, text_input, transcription.text, user_name, timestamp) | |
st.session_state.messages.append({"user": "Assistant", "message": transcription.text, "timestamp": timestamp}) | |
save_data() | |
# Function to process video (using GPT-4o) | |
def process_video(user_name, video_input, user_prompt): | |
if isinstance(video_input, str): | |
with open(video_input, "rb") as video_file: | |
video_input = video_file.read() | |
base64Frames, audio_path = extract_video_frames(video_input) | |
transcript = process_audio_for_video(video_input) | |
response = client.chat.completions.create( | |
model=GPT4O_MODEL, | |
messages=[ | |
{"role": "system", "content": "You are generating a video summary. Create a summary of the provided video and its transcript. Respond in Markdown"}, | |
{"role": "user", "content": [ | |
"These are the frames from the video.", | |
*map(lambda x: {"type": "image_url", "image_url": {"url": f'data:image/jpg;base64,{x}', "detail": "low"}}, base64Frames), | |
{"type": "text", "text": f"The audio transcription is: {transcript}"}, | |
{"type": "text", "text": user_prompt} | |
]} | |
], | |
temperature=0, | |
) | |
video_response = response.choices[0].message.content | |
st.markdown(video_response) | |
timestamp = datetime.now(pytz.utc).strftime('%Y-%m-%d %H:%M:%S %Z') | |
filename_md = generate_filename(user_prompt, "md") | |
create_file(filename_md, user_prompt, video_response, user_name, timestamp) | |
st.session_state.messages.append({"user": user_name, "message": video_response, "timestamp": timestamp}) | |
save_data() | |
return video_response | |
# Main function for each column | |
def main_column(column_name): | |
st.markdown(f"##### {column_name}") | |
selected_model = st.selectbox(f"Select Model for {column_name}", list(model_links.keys()), key=f"{column_name}_model") | |
temp_values = st.slider(f'Select a temperature value for {column_name}', 0.0, 1.0, (0.5), key=f"{column_name}_temp") | |
option = st.selectbox(f"Select an option for {column_name}", ("Text", "Image", "Audio", "Video"), key=f"{column_name}_option") | |
if option == "Text": | |
text_input = st.text_input(f"Enter your text for {column_name}:", key=f"{column_name}_text") | |
if text_input: | |
process_text(st.session_state.current_user['name'], text_input, selected_model, temp_values) | |
elif option == "Image": | |
text_input = st.text_input(f"Enter text prompt to use with Image context for {column_name}:", key=f"{column_name}_image_text") | |
uploaded_files = st.file_uploader(f"Upload images for {column_name}", type=["png", "jpg", "jpeg"], accept_multiple_files=True, key=f"{column_name}_image_upload") | |
for image_input in uploaded_files: | |
image_bytes = image_input.read() | |
process_image(st.session_state.current_user['name'], image_bytes, text_input) | |
elif option == "Audio": | |
text_input = st.text_input(f"Enter text prompt to use with Audio context for {column_name}:", key=f"{column_name}_audio_text") | |
uploaded_files = st.file_uploader(f"Upload an audio file for {column_name}", type=["mp3", "wav"], accept_multiple_files=True, key=f"{column_name}_audio_upload") | |
for audio_input in uploaded_files: | |
process_audio(st.session_state.current_user['name'], audio_input, text_input) | |
elif option == "Video": | |
video_input = st.file_uploader(f"Upload a video file for {column_name}", type=["mp4"], key=f"{column_name}_video_upload") | |
text_input = st.text_input(f"Enter text prompt to use with Video context for {column_name}:", key=f"{column_name}_video_text") | |
if video_input and text_input: | |
process_video(st.session_state.current_user['name'], video_input, text_input) | |
# Main Streamlit app | |
st.title("Multiuser Chat with Llama 3.1 and GPT-4o") | |
# Sidebar | |
with st.sidebar: | |
st.title("User Info") | |
st.write(f"Current User: {st.session_state.current_user['name']}") | |
st.write(f"Browser: {st.session_state.current_user['browser']}") | |
new_name = st.text_input("Change your name:") | |
if st.button("Update Name"): | |
if new_name: | |
for user in st.session_state.users: | |
if user['id'] == st.session_state.current_user['id']: | |
user['name'] = new_name | |
st.session_state.current_user['name'] = new_name | |
save_data() | |
st.success(f"Name updated to {new_name}") | |
break | |
st.title("Active Users") | |
for user in st.session_state.users: | |
st.write(f"{user['name']} ({user['browser']})") | |
if st.button('Reset Chat'): | |
reset_conversation() | |
# Create two columns | |
col1, col2 = st.columns(2) | |
# Run main function for each column | |
with col1: | |
main_column("Column 1") | |
with col2: | |
main_column("Column 2") | |
# Function to generate filenames | |
def generate_filename(prompt, file_type): | |
central = pytz.timezone('US/Central') | |
safe_date_time = datetime.now(central).strftime("%m%d_%H%M") | |
replaced_prompt = prompt.replace(" ", "_").replace("\n", "_") | |
safe_prompt = "".join(x for x in replaced_prompt if x.isalnum() or x == "_")[:90] | |
return f"{safe_date_time}_{safe_prompt}.{file_type}" | |
# Function to create files | |
def create_file(filename, prompt, response, user_name, timestamp): | |
with open(filename, "w", encoding="utf-8") as f: | |
f.write(f"User: {user_name}\nTimestamp: {timestamp}\n\nPrompt:\n{prompt}\n\nResponse:\n{response}") | |
# Function to extract video frames | |
def extract_video_frames(video_path, seconds_per_frame=2): | |
base64Frames = [] | |
video = cv2.VideoCapture(video_path) | |
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT)) | |
fps = video.get(cv2.CAP_PROP_FPS) | |
frames_to_skip = int(fps * seconds_per_frame) | |
curr_frame = 0 | |
while curr_frame < total_frames - 1: | |
video.set(cv2.CAP_PROP_POS_FRAMES, curr_frame) | |
success, frame = video.read() | |
if not success: | |
break | |
_, buffer = cv2.imencode(".jpg", frame) | |
base64Frames.append(base64.b64encode(buffer).decode("utf-8")) | |
curr_frame += frames_to_skip | |
video.release() | |
return base64Frames, None | |
# Function to process audio for video | |
def process_audio_for_video(video_input): | |
try: | |
transcription = client.audio.transcriptions.create( | |
model="whisper-1", | |
file=video_input, | |
) | |
return transcription.text | |
except: | |
return '' | |
# Run the Streamlit app | |
if __name__ == "__main__": | |
st.markdown("*Generated content may be inaccurate or false.*") | |
st.markdown("\n...") |