# original: | |
#import gradio as gr | |
#gr.Interface.load("models/sileod/deberta-v3-base-tasksource-nli").launch() | |
# chatGPT prompt1: Rewrite this program in python and gradio to load an example file with two input text fields and output of the classification field. | |
import gradio as gr | |
def classify_text(text1, text2): | |
# Load pre-trained model | |
model = gr.load_model("models/sileod/deberta-v3-base-tasksource-nli") | |
# Perform classification on input text | |
output = model.predict([text1, text2])[0] | |
return output | |
# Create input fields | |
input_text1 = gr.Textbox(label="Input Text 1") | |
input_text2 = gr.Textbox(label="Input Text 2") | |
# Create output field | |
output_text = gr.Textbox(label="Classification Output") | |
# Create Gradio interface | |
gr.Interface(classify_text, | |
inputs=[input_text1, input_text2], | |
outputs=output_text, | |
examples=[["Example Text 1", "Example Text 2"]]).launch() | |