Update main.py
#3
by
awakenai
- opened
main.py
CHANGED
@@ -1,21 +1,49 @@
|
|
1 |
-
#
|
2 |
-
#uvicorn main:app --reload
|
3 |
-
#import gradio as gr
|
4 |
-
|
5 |
-
from transformers import pipeline
|
6 |
from fastapi import FastAPI
|
7 |
|
8 |
app = FastAPI()
|
9 |
|
10 |
-
#generator = pipeline('text-generation',model='gpt2')
|
11 |
#generator = pipeline('text-generation',model='Open-Orca/Mistral-7B-OpenOrca')
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
|
15 |
@app.get("/")
|
16 |
async def root():
|
17 |
-
return {"message": "Hello World"}
|
18 |
#return generator('What is love',max_length=100, num_return_sequences=1)
|
|
|
19 |
|
20 |
@app.post("/predict")
|
21 |
async def root(text):
|
|
|
1 |
+
#from transformers import pipeline
|
|
|
|
|
|
|
|
|
2 |
from fastapi import FastAPI
|
3 |
|
4 |
app = FastAPI()
|
5 |
|
|
|
6 |
#generator = pipeline('text-generation',model='Open-Orca/Mistral-7B-OpenOrca')
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
from haystack.document_stores import InMemoryDocumentStore
|
11 |
+
from haystack.utils import build_pipeline, add_example_data, print_answers
|
12 |
+
|
13 |
+
# We are model agnostic :) Here, you can choose from: "anthropic", "cohere", "huggingface", and "openai".
|
14 |
+
provider = "openai"
|
15 |
+
API_KEY = "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" # ADD YOUR KEY HERE
|
16 |
+
|
17 |
+
# We support many different databases. Here we load a simple and lightweight in-memory database.
|
18 |
+
document_store = InMemoryDocumentStore(use_bm25=True)
|
19 |
+
|
20 |
+
# Download and add Game of Thrones TXT articles to Haystack DocumentStore.
|
21 |
+
# You can also provide a folder with your local documents.
|
22 |
+
#add_example_data(document_store, "data/GoT_getting_started")
|
23 |
+
add_example_data(document_store, "/content/Books")
|
24 |
+
|
25 |
+
# Build a pipeline with a Retriever to get relevant documents to the query and a PromptNode interacting with LLMs using a custom prompt.
|
26 |
+
pipeline = build_pipeline(provider, API_KEY, document_store)
|
27 |
+
|
28 |
+
# Ask a question on the data you just added.
|
29 |
+
result = pipeline.run(query="What is job yoga?")
|
30 |
+
|
31 |
+
# For details, like which documents were used to generate the answer, look into the <result> object
|
32 |
+
#print_answers(result, details="medium")
|
33 |
+
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|
40 |
|
41 |
|
42 |
@app.get("/")
|
43 |
async def root():
|
44 |
+
#return {"message": "Hello World"}
|
45 |
#return generator('What is love',max_length=100, num_return_sequences=1)
|
46 |
+
return print_answers(result, details="medium")
|
47 |
|
48 |
@app.post("/predict")
|
49 |
async def root(text):
|