Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,31 +1,14 @@
|
|
1 |
-
import streamlit as st
|
2 |
import torch
|
3 |
-
from peft import
|
4 |
-
from transformers import AutoTokenizer, TextStreamer
|
5 |
|
6 |
-
# Load
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
# Load the model
|
11 |
-
@st.cache_resource
|
12 |
-
def load_model():
|
13 |
-
model = AutoPeftModelForCausalLM.from_pretrained(
|
14 |
-
model_path,
|
15 |
-
torch_dtype=torch.float16 if not load_in_4bit else torch.float32,
|
16 |
-
load_in_4bit=load_in_4bit,
|
17 |
-
device_map="auto"
|
18 |
-
)
|
19 |
-
model.eval()
|
20 |
-
return model
|
21 |
|
22 |
# Load tokenizer
|
23 |
-
|
24 |
-
def load_tokenizer():
|
25 |
-
return AutoTokenizer.from_pretrained(model_path)
|
26 |
-
|
27 |
-
model = load_model()
|
28 |
-
tokenizer = load_tokenizer()
|
29 |
|
30 |
def generate_response(question):
|
31 |
messages = [{"role": "user", "content": question}]
|
@@ -48,15 +31,11 @@ def generate_response(question):
|
|
48 |
|
49 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
question = st.text_area("Ask a legal question:")
|
55 |
-
if st.button("Generate Response"):
|
56 |
if question.strip():
|
57 |
-
|
58 |
-
|
59 |
-
st.subheader("Answer:")
|
60 |
-
st.write(answer)
|
61 |
else:
|
62 |
-
|
|
|
|
|
1 |
import torch
|
2 |
+
from peft import PeftModel
|
3 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
|
4 |
|
5 |
+
# Load model from Hugging Face Hub
|
6 |
+
base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3.2-3b-instruct-bnb-4bit")
|
7 |
+
model = PeftModel.from_pretrained(base_model, "ayush0504/Fine-Tunned-GPT")
|
8 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
# Load tokenizer
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained("ayush0504/Fine-Tunned-GPT")
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def generate_response(question):
|
14 |
messages = [{"role": "user", "content": question}]
|
|
|
31 |
|
32 |
return tokenizer.decode(output[0], skip_special_tokens=True)
|
33 |
|
34 |
+
# Example usage
|
35 |
+
if __name__ == "__main__":
|
36 |
+
question = input("Ask a legal question: ")
|
|
|
|
|
37 |
if question.strip():
|
38 |
+
answer = generate_response(question)
|
39 |
+
print("\nAnswer:", answer)
|
|
|
|
|
40 |
else:
|
41 |
+
print("Please enter a valid question.")
|