ayush0504 commited on
Commit
c0dbf63
·
verified ·
1 Parent(s): 48ceee6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +13 -34
app.py CHANGED
@@ -1,31 +1,14 @@
1
- import streamlit as st
2
  import torch
3
- from peft import AutoPeftModelForCausalLM
4
- from transformers import AutoTokenizer, TextStreamer
5
 
6
- # Load LoRA fine-tuned model and tokenizer
7
- model_path = "lora_model" # Your model folder path
8
- load_in_4bit = True # Whether to load in 4-bit precision
9
-
10
- # Load the model
11
- @st.cache_resource
12
- def load_model():
13
- model = AutoPeftModelForCausalLM.from_pretrained(
14
- model_path,
15
- torch_dtype=torch.float16 if not load_in_4bit else torch.float32,
16
- load_in_4bit=load_in_4bit,
17
- device_map="auto"
18
- )
19
- model.eval()
20
- return model
21
 
22
  # Load tokenizer
23
- @st.cache_resource
24
- def load_tokenizer():
25
- return AutoTokenizer.from_pretrained(model_path)
26
-
27
- model = load_model()
28
- tokenizer = load_tokenizer()
29
 
30
  def generate_response(question):
31
  messages = [{"role": "user", "content": question}]
@@ -48,15 +31,11 @@ def generate_response(question):
48
 
49
  return tokenizer.decode(output[0], skip_special_tokens=True)
50
 
51
- # Streamlit UI
52
- st.title("Indian Penal Code AI Assistant")
53
-
54
- question = st.text_area("Ask a legal question:")
55
- if st.button("Generate Response"):
56
  if question.strip():
57
- with st.spinner("Generating response..."):
58
- answer = generate_response(question)
59
- st.subheader("Answer:")
60
- st.write(answer)
61
  else:
62
- st.warning("Please enter a question.")
 
 
1
  import torch
2
+ from peft import PeftModel
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
4
 
5
+ # Load model from Hugging Face Hub
6
+ base_model = AutoModelForCausalLM.from_pretrained("unsloth/llama-3.2-3b-instruct-bnb-4bit")
7
+ model = PeftModel.from_pretrained(base_model, "ayush0504/Fine-Tunned-GPT")
8
+ model.eval()
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  # Load tokenizer
11
+ tokenizer = AutoTokenizer.from_pretrained("ayush0504/Fine-Tunned-GPT")
 
 
 
 
 
12
 
13
  def generate_response(question):
14
  messages = [{"role": "user", "content": question}]
 
31
 
32
  return tokenizer.decode(output[0], skip_special_tokens=True)
33
 
34
+ # Example usage
35
+ if __name__ == "__main__":
36
+ question = input("Ask a legal question: ")
 
 
37
  if question.strip():
38
+ answer = generate_response(question)
39
+ print("\nAnswer:", answer)
 
 
40
  else:
41
+ print("Please enter a valid question.")