|
from sklearn.preprocessing import StandardScaler
|
|
from sklearn.impute import SimpleImputer
|
|
from sklearn.decomposition import PCA
|
|
from sklearn.feature_selection import RFE
|
|
from sklearn.ensemble import RandomForestRegressor
|
|
from sklearn.linear_model import LinearRegression
|
|
|
|
def select_features_pca(df, n_components):
|
|
df_numeric = df.select_dtypes(include=[float, int])
|
|
|
|
imputer = SimpleImputer(strategy='mean')
|
|
df_imputed = imputer.fit_transform(df_numeric)
|
|
|
|
scaler = StandardScaler()
|
|
df_scaled = scaler.fit_transform(df_imputed)
|
|
|
|
pca = PCA(n_components=n_components)
|
|
components = pca.fit_transform(df_scaled)
|
|
|
|
feature_names = df_numeric.columns
|
|
important_features = feature_names[:n_components]
|
|
|
|
return df[important_features], important_features
|
|
|
|
def select_features_rfe(df, n_features_to_select):
|
|
df_numeric = df.select_dtypes(include=[float, int])
|
|
|
|
imputer = SimpleImputer(strategy='mean')
|
|
df_imputed = imputer.fit_transform(df_numeric)
|
|
|
|
scaler = StandardScaler()
|
|
df_scaled = scaler.fit_transform(df_imputed)
|
|
|
|
model = LinearRegression()
|
|
rfe = RFE(estimator=model, n_features_to_select=n_features_to_select)
|
|
rfe.fit(df_scaled, df_scaled[:, 0])
|
|
|
|
important_features = [df_numeric.columns[i] for i in range(len(rfe.support_)) if rfe.support_[i]]
|
|
|
|
return df[important_features], important_features
|
|
|
|
def select_features_rf(df, n_features_to_select):
|
|
df_numeric = df.select_dtypes(include=[float, int])
|
|
|
|
imputer = SimpleImputer(strategy='mean')
|
|
df_imputed = imputer.fit_transform(df_numeric)
|
|
|
|
scaler = StandardScaler()
|
|
df_scaled = scaler.fit_transform(df_imputed)
|
|
|
|
model = RandomForestRegressor()
|
|
model.fit(df_scaled, df_scaled[:, 0])
|
|
|
|
importances = model.feature_importances_
|
|
indices = importances.argsort()[-n_features_to_select:][::-1]
|
|
|
|
important_features = [df_numeric.columns[i] for i in indices]
|
|
|
|
return df[important_features], important_features
|
|
|