Spaces:
Sleeping
Sleeping
File size: 2,248 Bytes
b0c8c8c 7e4deac b0c8c8c 6239656 b0c8c8c 0a478f6 b0c8c8c 7e4deac b0c8c8c 7e4deac 81578be b0c8c8c 81578be b0c8c8c 7e4deac 0a478f6 b0c8c8c ad4e39f b0c8c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import csv
import io
import requests
import json
import html # For escaping HTML characters
from bs4 import BeautifulSoup
from openai import OpenAI
# Initialize OpenAI API with Nvidia's Llama 3.1 70b nemotron model
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=os.environ.get("KEY")
)
def clean_text_output(text):
"""
Cleans the output to handle HTML characters and unwanted tags.
"""
text = html.unescape(text) # Unescape HTML entities
soup = BeautifulSoup(text, 'html.parser') # Use BeautifulSoup to handle HTML tags
cleaned_text = soup.get_text(separator="\n").strip() # Remove tags and handle newlines
return cleaned_text
def modelFeedback(ats_score, resume_data, job_description):
input_prompt = f"""
You are now an ATS Score analyzer and given ATS Score is {int(ats_score * 100)}%.
Your task is to provide feedback to the user based on the ATS score.
Print ATS score first. Mention where the resume is good and where the resume lacks.
Show list of missing skills and suggest improvements.
Show list of weak action verbs and suggest improvements.
Show weaker sentences and suggest improvements.
Talk about each section of the user's resume and discuss good and bad points of it only if it has any.
Resume Data: {resume_data}
Job Description: {job_description}
"""
try:
# Generate response using the OpenAI API
response = client.chat.completions.create(
model="nvidia/llama-3.1-nemotron-70b-instruct", # Using Llama 3.1 70b
messages=[
{"role": "user", "content": input_prompt}
],
temperature=0.03, # Lowering temperature for precise output
top_p=0.7, # Prioritize high-probability tokens
max_tokens=700, # Allow longer content
)
# Extract and clean the response
feedback_text = response.choices[0].message.content.strip() # Corrected line
cleaned_feedback = clean_text_output(feedback_text)
return cleaned_feedback
except requests.exceptions.RequestException as e:
print(f"API request failed: {str(e)}")
return "Error: Unable to generate feedback." |