File size: 6,641 Bytes
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3582c8a
 
 
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
3582c8a
 
 
8be1cb6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import numpy as np
from math import ceil
from abc import abstractmethod
from src.utils.mymath import a_clip
from src.smb.level import *

defaults = {'n': 5, 'gl': 0.14, 'gg': 0.30, 'wl': 2, 'wg': 10}


class RewardFunc:
    def __init__(self, *args):
        self.terms = args
        self.require_simlt = any(term.require_simlt for term in self.terms)

    def get_rewards(self, **kwargs):
        return {
            term.get_name(): term.compute_rewards(**kwargs)
            for term in self.terms
        }

    def get_n(self):
        n = 1
        for term in self.terms:
            try:
                n = max(n, term.n)
            except AttributeError:
                pass
        return n

    def __str__(self):
        return 'Reward Function:\n' + ',\n'.join('\t' + str(term) for term in self.terms)


class RewardTerm:
    def __init__(self, require_simlt):
        self.require_simlt = require_simlt

    def get_name(self):
        return self.__class__.__name__

    @abstractmethod
    def compute_rewards(self, **kwargs):
        pass


class Playability(RewardTerm):
    """
    可玩性
    """
    def __init__(self, magnitude=1):
        super(Playability, self).__init__(True)
        self.magnitude=magnitude

    def compute_rewards(self, **kwargs):
        simlt_res = kwargs['simlt_res']
        return [0 if item['playable'] else -self.magnitude for item in simlt_res[1:]]

    def __str__(self):
        return f'{self.magnitude} * Playability'


class MeanDivergenceFun(RewardTerm):
    """
    多样性
    """
    def __init__(self, goal_div, n=defaults['n'], s=8):
        super().__init__(False)
        self.l = goal_div * 0.26 / 0.6
        self.u = goal_div * 0.94 / 0.6
        self.n = n
        self.s = s

    def compute_rewards(self, **kwargs):
        segs = kwargs['segs']
        rewards = []
        for i in range(1, len(segs)):
            seg = segs[i]
            histroy = lvlhcat(segs[max(0, i - self.n): i])
            k = 0
            divergences = []
            while k * self.s <= (min(self.n, i) - 1) * MarioLevel.seg_width:
                cmp_seg = histroy[:, k * self.s: k * self.s + MarioLevel.seg_width]
                divergences.append(tile_pattern_js_div(seg, cmp_seg))
                k += 1
            mean_d = sum(divergences) / len(divergences)
            if mean_d < self.l:
                rewards.append(-(mean_d - self.l) ** 2)
            elif mean_d > self.u:
                rewards.append(-(mean_d - self.u) ** 2)
            else:
                rewards.append(0)
        return rewards


class SACNovelty(RewardTerm):
    def __init__(self, magnitude, goal_div, require_simlt, n):
        super().__init__(require_simlt)
        self.g = goal_div
        self.magnitude = magnitude
        self.n = n

    def compute_rewards(self, **kwargs):
        n_segs = len(kwargs['segs'])
        rewards = []
        for i in range(1, n_segs):
            reward = 0
            r_sum = 0
            for k in range(1, self.n + 1):
                j = i - k
                if j < 0:
                    break
                r = 1 - k / (self.n + 1)
                r_sum += r
                reward += a_clip(self.disim(i, j, **kwargs), self.g, r)
            rewards.append(reward * self.magnitude / r_sum)
        return rewards

    @abstractmethod
    def disim(self, i, j, **kwargs):
        pass


class LevelSACN(SACNovelty):
    def __init__(self, magnitude=1, g=defaults['gl'], w=defaults['wl'], n=defaults['n']):
        super(LevelSACN, self).__init__(magnitude, g, False, n)
        self.w = w

    def disim(self, i, j, **kwargs):
        segs = kwargs['segs']
        seg1, seg2 = segs[i], segs[j]
        return tile_pattern_js_div(seg1, seg2, self.w)

    def __str__(self):
        s = f'{self.magnitude} * LevelSACN(g={self.g:.3g}, w={self.w}, n={self.n})'
        return s


class GameplaySACN(SACNovelty):
    def __init__(self, magnitude=1, g=defaults['gg'], w=defaults['wg'], n=defaults['n']):
        super(GameplaySACN, self).__init__(magnitude, g, True, n)
        self.w = w

    def disim(self, i, j, **kwargs):
        simlt_res = kwargs['simlt_res']
        trace1, trace2 = simlt_res[i]['trace'], simlt_res[j]['trace']
        return trace_div(trace1, trace2, self.w)

    def __str__(self):
        s = f'{self.magnitude} * GameplaySACN(g={self.g:.3g}, w={self.w}, n={self.n})'
        return s


class Fun(RewardTerm):
    def __init__(self, magnitude=1., num_windows=3, lb=0.26, ub=0.94, stride=8):
        super().__init__(False)
        self.lb, self.ub = lb, ub
        self.magnitude = magnitude
        self.stride = stride
        self.num_windows = num_windows
        self.n = ceil(num_windows * stride / MarioLevel.seg_width - 1e-8)

    def compute_rewards(self, **kwargs):
        n_segs = len(kwargs['segs'])
        lvl = lvlhcat(kwargs['segs'])
        W = MarioLevel.seg_width
        rewards = []
        for i in range(1, n_segs):
            seg = lvl[:, W*i: W*(i+1)]
            divs = []
            for k in range(0, self.num_windows + 1):
                s = W * i - k * self.stride
                if s < 0:
                    break
                cmp_seg = lvl[:, s:s+W]
                divs.append(tile_pattern_kl_div(seg, cmp_seg))
            mean_div = np.mean(divs)
            rew = 0
            if mean_div > self.ub:
                rew = -(self.ub - mean_div) ** 2
            if mean_div < self.lb:
                rew = -(self.lb - mean_div) ** 2
            rewards.append(rew * self.magnitude)
        return rewards

    def __str__(self):
        s = f'{self.magnitude} * Fun(lb={self.lb:.2f}, ub={self.ub:.2f}, n={self.num_windows}, stride={self.stride})'
        return s


class HistoricalDeviation(RewardTerm):
    def __init__(self, magnitude=1., m=3, n=10):
        super().__init__(False)
        self.magnitude = magnitude
        self.m = m
        self.n = n

    def compute_rewards(self, **kwargs):
        segs = kwargs['segs']
        n_segs = len(kwargs['segs'])
        rewards = []
        for i in range(1, n_segs):
            divs = []
            for k in range(1, self.n+1):
                j = i - k
                if j < 0:
                    break
                divs.append(tile_pattern_kl_div(segs[i], segs[j]))
            divs.sort()
            m = min(i, self.m)
            rew = np.mean(divs[:m])
            rewards.append(rew * self.magnitude)
        return rewards

    def __str__(self):
        return f'{self.magnitude} * HistoricalDeviation(m={self.m}, n={self.n})'


if __name__ == '__main__':
    rfunc = HistoricalDeviation()