NCERL-Diverse-PCG / src /rlkit /util /hyperparameter.py
baiyanlali-zhao's picture
init
eaf2e33
raw
history blame
7.09 kB
"""
Custom hyperparameter functions.
"""
import abc
import copy
import math
import random
import itertools
from typing import List
import rlkit.pythonplusplus as ppp
class Hyperparameter(metaclass=abc.ABCMeta):
def __init__(self, name):
self._name = name
@property
def name(self):
return self._name
class RandomHyperparameter(Hyperparameter):
def __init__(self, name):
super().__init__(name)
self._last_value = None
@abc.abstractmethod
def generate_next_value(self):
"""Return a value for the hyperparameter"""
return
def generate(self):
self._last_value = self.generate_next_value()
return self._last_value
class EnumParam(RandomHyperparameter):
def __init__(self, name, possible_values):
super().__init__(name)
self.possible_values = possible_values
def generate_next_value(self):
return random.choice(self.possible_values)
class LogFloatParam(RandomHyperparameter):
"""
Return something ranging from [min_value + offset, max_value + offset],
distributed with a log.
"""
def __init__(self, name, min_value, max_value, *, offset=0):
super(LogFloatParam, self).__init__(name)
self._linear_float_param = LinearFloatParam("log_" + name,
math.log(min_value),
math.log(max_value))
self.offset = offset
def generate_next_value(self):
return math.e ** (self._linear_float_param.generate()) + self.offset
class LinearFloatParam(RandomHyperparameter):
def __init__(self, name, min_value, max_value):
super(LinearFloatParam, self).__init__(name)
self._min = min_value
self._delta = max_value - min_value
def generate_next_value(self):
return random.random() * self._delta + self._min
class LogIntParam(RandomHyperparameter):
def __init__(self, name, min_value, max_value, *, offset=0):
super().__init__(name)
self._linear_float_param = LinearFloatParam("log_" + name,
math.log(min_value),
math.log(max_value))
self.offset = offset
def generate_next_value(self):
return int(
math.e ** (self._linear_float_param.generate()) + self.offset
)
class LinearIntParam(RandomHyperparameter):
def __init__(self, name, min_value, max_value):
super(LinearIntParam, self).__init__(name)
self._min = min_value
self._max = max_value
def generate_next_value(self):
return random.randint(self._min, self._max)
class FixedParam(RandomHyperparameter):
def __init__(self, name, value):
super().__init__(name)
self._value = value
def generate_next_value(self):
return self._value
class Sweeper(object):
pass
class RandomHyperparameterSweeper(Sweeper):
def __init__(self, hyperparameters=None, default_kwargs=None):
if default_kwargs is None:
default_kwargs = {}
self._hyperparameters = hyperparameters or []
self._validate_hyperparameters()
self._default_kwargs = default_kwargs
def _validate_hyperparameters(self):
names = set()
for hp in self._hyperparameters:
name = hp.name
if name in names:
raise Exception("Hyperparameter '{0}' already added.".format(
name))
names.add(name)
def set_default_parameters(self, default_kwargs):
self._default_kwargs = default_kwargs
def generate_random_hyperparameters(self):
hyperparameters = {}
for hp in self._hyperparameters:
hyperparameters[hp.name] = hp.generate()
hyperparameters = ppp.dot_map_dict_to_nested_dict(hyperparameters)
return ppp.merge_recursive_dicts(
hyperparameters,
copy.deepcopy(self._default_kwargs),
ignore_duplicate_keys_in_second_dict=True,
)
def sweep_hyperparameters(self, function, num_configs):
returned_value_and_params = []
for _ in range(num_configs):
kwargs = self.generate_random_hyperparameters()
score = function(**kwargs)
returned_value_and_params.append((score, kwargs))
return returned_value_and_params
class DeterministicHyperparameterSweeper(Sweeper):
"""
Do a grid search over hyperparameters based on a predefined set of
hyperparameters.
"""
def __init__(self, hyperparameters, default_parameters=None):
"""
:param hyperparameters: A dictionary of the form
```
{
'hp_1': [value1, value2, value3],
'hp_2': [value1, value2, value3],
...
}
```
This format is like the param_grid in SciKit-Learn:
http://scikit-learn.org/stable/modules/grid_search.html#exhaustive-grid-search
:param default_parameters: Default key-value pairs to add to the
dictionary.
"""
self._hyperparameters = hyperparameters
self._default_kwargs = default_parameters or {}
named_hyperparameters = []
for name, values in self._hyperparameters.items():
named_hyperparameters.append(
[(name, v) for v in values]
)
self._hyperparameters_dicts = [
ppp.dot_map_dict_to_nested_dict(dict(tuple_list))
for tuple_list in itertools.product(*named_hyperparameters)
]
def iterate_hyperparameters(self):
"""
Iterate over the hyperparameters in a grid-manner.
:return: List of dictionaries. Each dictionary is a map from name to
hyperpameter.
"""
return [
ppp.merge_recursive_dicts(
hyperparameters,
copy.deepcopy(self._default_kwargs),
ignore_duplicate_keys_in_second_dict=True,
)
for hyperparameters in self._hyperparameters_dicts
]
# TODO(vpong): Test this
class DeterministicSweeperCombiner(object):
"""
A simple wrapper to combiner multiple DeterministicHyperParameterSweeper's
"""
def __init__(self, sweepers: List[DeterministicHyperparameterSweeper]):
self._sweepers = sweepers
def iterate_list_of_hyperparameters(self):
"""
Usage:
```
sweeper1 = DeterministicHyperparameterSweeper(...)
sweeper2 = DeterministicHyperparameterSweeper(...)
combiner = DeterministicSweeperCombiner([sweeper1, sweeper2])
for params_1, params_2 in combiner.iterate_list_of_hyperparameters():
# param_1 = {...}
# param_2 = {...}
```
:return: Generator of hyperparameters, in the same order as provided
sweepers.
"""
return itertools.product(
sweeper.iterate_hyperparameters()
for sweeper in self._sweepers
)