bauckluc commited on
Commit
afa7f02
·
verified ·
1 Parent(s): 656a7fb

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -2
app.py CHANGED
@@ -14,12 +14,17 @@ def predict_regression(image):
14
  # Preprocess image
15
  image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
16
  image = image.resize((150, 150)).convert('RGB') # Resize the image to 150x150 and convert it to RGB
17
- image = np.array(image)
18
- image = image / 255.0 # Normalize image to [0, 1] range
19
  image = np.expand_dims(image, axis=0) # Add batch dimension
20
 
 
 
 
 
21
  # Predict
22
  prediction = model.predict(image) # Assuming single regression value
 
 
23
  confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
24
  return confidences
25
 
 
14
  # Preprocess image
15
  image = Image.fromarray(image.astype('uint8')) # Convert numpy array to PIL image
16
  image = image.resize((150, 150)).convert('RGB') # Resize the image to 150x150 and convert it to RGB
17
+ image = np.array(image) / 255.0 # Normalize image to [0, 1] range
 
18
  image = np.expand_dims(image, axis=0) # Add batch dimension
19
 
20
+ # Print statements for debugging
21
+ print(f"Image shape (after preprocessing): {image.shape}")
22
+ print(f"Image data (sample): {image[0, :5, :5, 0]}") # Print a small sample of the data for inspection
23
+
24
  # Predict
25
  prediction = model.predict(image) # Assuming single regression value
26
+ print(f"Raw model prediction: {prediction}")
27
+
28
  confidences = {labels[i]: np.round(float(prediction[0][i]), 2) for i in range(len(labels))}
29
  return confidences
30