PortraitTransfer / tools /normalizer.py
befozg
added initial portrait transfer app
f0de4e8
raw
history blame
10.5 kB
import numpy as np
import cv2
import os
import tqdm
import time
import torch
import torch.nn as nn
import torch.nn.functional as F
from .util import rgb_to_lab, lab_to_rgb
def blend(f, b, a):
return f*a + b*(1 - a)
class PatchedHarmonizer(nn.Module):
def __init__(self, grid_count=1, init_weights=[0.9, 0.1]):
super(PatchedHarmonizer, self).__init__()
self.eps = 1e-8
# self.weights = torch.nn.Parameter(torch.ones((grid_count, grid_count)), requires_grad=True)
# self.grid_weights_ = torch.nn.Parameter(torch.FloatTensor(init_weights), requires_grad=True)
self.grid_weights = torch.nn.Parameter(
torch.FloatTensor(init_weights), requires_grad=True)
# self.weights.retain_graph = True
self.grid_count = grid_count
def lab_shift(self, x, invert=False):
x = x.float()
if invert:
x[:, 0, :, :] /= 2.55
x[:, 1, :, :] -= 128
x[:, 2, :, :] -= 128
else:
x[:, 0, :, :] *= 2.55
x[:, 1, :, :] += 128
x[:, 2, :, :] += 128
return x
def get_mean_std(self, img, mask, dim=[2, 3]):
sum = torch.sum(img*mask, dim=dim) # (B, C)
num = torch.sum(mask, dim=dim) # (B, C)
mu = sum / (num + self.eps)
mean = mu[:, :, None, None]
var = torch.sum(((img - mean)*mask) ** 2, dim=dim) / (num + self.eps)
var = var[:, :, None, None]
return mean, torch.sqrt(var+self.eps)
def compute_patch_statistics(self, lab):
means, stds = [], []
bs, dx, dy = lab.shape[0], lab.shape[2] // self.grid_count, lab.shape[3] // self.grid_count
for h in range(self.grid_count):
cmeans, cstds = [], []
for w in range(self.grid_count):
ind = [h*dx, (h+1)*dx, w*dy, (w+1)*dy]
if h == self.grid_count - 1:
ind[1] = None
if w == self.grid_count - 1:
ind[-1] = None
m, v = self.compute_mean_var(
lab[:, :, ind[0]:ind[1], ind[2]:ind[3]], dim=[2, 3])
cmeans.append(m)
cstds.append(v)
means.append(cmeans)
stds.append(cstds)
return means, stds
def compute_mean_var(self, x, dim=[1, 2]):
mean = x.float().mean(dim=dim)[:, :, None, None]
var = torch.sqrt(x.float().var(dim=dim))[:, :, None, None]
return mean, var
def forward(self, fg_rgb, bg_rgb, alpha, masked_stats=False):
bg_rgb = F.interpolate(bg_rgb, size=(
fg_rgb.shape[2:])) # b x C x H x W
bg_lab = bg_rgb # self.lab_shift(rgb_to_lab(bg_rgb/255.))
fg_lab = fg_rgb # self.lab_shift(rgb_to_lab(fg_rgb/255.))
if masked_stats:
self.bg_global_mean, self.bg_global_var = self.get_mean_std(
img=bg_lab, mask=(1-alpha))
self.fg_global_mean, self.fg_global_var = self.get_mean_std(
img=fg_lab, mask=torch.ones_like(alpha))
else:
self.bg_global_mean, self.bg_global_var = self.compute_mean_var(bg_lab, dim=[
2, 3])
self.fg_global_mean, self.fg_global_var = self.compute_mean_var(fg_lab, dim=[
2, 3])
self.bg_means, self.bg_vars = self.compute_patch_statistics(
bg_lab)
self.fg_means, self.fg_vars = self.compute_patch_statistics(
fg_lab)
fg_harm = self.harmonize(fg_lab)
# fg_harm = lab_to_rgb(fg_harm)
bg = F.interpolate(bg_rgb, size=(fg_rgb.shape[2:]))/255.
composite = blend(fg_harm, bg, alpha)
return composite, fg_harm
def harmonize(self, fg):
harmonized = torch.zeros_like(fg)
dx = fg.shape[2] // self.grid_count
dy = fg.shape[3] // self.grid_count
for h in range(self.grid_count):
for w in range(self.grid_count):
ind = [h*dx, (h+1)*dx, w*dy, (w+1)*dy]
if h == self.grid_count - 1:
ind[1] = None
if w == self.grid_count - 1:
ind[-1] = None
harmonized[:, :, ind[0]:ind[1], ind[2]:ind[3]] = self.normalize_channel(
fg[:, :, ind[0]:ind[1], ind[2]:ind[3]], h, w)
# harmonized = self.lab_shift(harmonized, invert=True)
return harmonized
def normalize_channel(self, value, h, w):
fg_local_mean, fg_local_var = self.fg_means[h][w], self.fg_vars[h][w]
bg_local_mean, bg_local_var = self.bg_means[h][w], self.bg_vars[h][w]
fg_global_mean, fg_global_var = self.fg_global_mean, self.fg_global_var
bg_global_mean, bg_global_var = self.bg_global_mean, self.bg_global_var
# global2global normalization
zeroed_mean = value - fg_global_mean
# (fg_v * div_global_v + (1-fg_v) * div_v)
scaled_var = zeroed_mean * (bg_global_var/(fg_global_var + self.eps))
normalized_global = scaled_var + bg_global_mean
# local2local normalization
zeroed_mean = value - fg_local_mean
# (fg_v * div_global_v + (1-fg_v) * div_v)
scaled_var = zeroed_mean * (bg_local_var/(fg_local_var + self.eps))
normalized_local = scaled_var + bg_local_mean
return self.grid_weights[0]*normalized_local + self.grid_weights[1]*normalized_global
def normalize_fg(self, value):
zeroed_mean = value - \
(self.fg_local_mean *
self.grid_weights[None, None, :, :, None, None]).sum().squeeze()
# (fg_v * div_global_v + (1-fg_v) * div_v)
scaled_var = zeroed_mean * \
(self.bg_global_var/(self.fg_global_var + self.eps))
normalized_lg = scaled_var + \
(self.bg_local_mean *
self.grid_weights[None, None, :, :, None, None]).sum().squeeze()
return normalized_lg
class PatchNormalizer(nn.Module):
def __init__(self, in_channels=3, eps=1e-7, grid_count=1, weights=[0.5, 0.5], init_value=1e-2):
super(PatchNormalizer, self).__init__()
self.grid_count = grid_count
self.eps = eps
self.weights = nn.Parameter(
torch.FloatTensor(weights), requires_grad=True)
self.fg_var = nn.Parameter(
init_value * torch.ones(in_channels)[None, :, None, None], requires_grad=True)
self.fg_bias = nn.Parameter(
init_value * torch.zeros(in_channels)[None, :, None, None], requires_grad=True)
self.patched_fg_var = nn.Parameter(
init_value * torch.ones(in_channels)[None, :, None, None], requires_grad=True)
self.patched_fg_bias = nn.Parameter(
init_value * torch.zeros(in_channels)[None, :, None, None], requires_grad=True)
self.bg_var = nn.Parameter(
init_value * torch.ones(in_channels)[None, :, None, None], requires_grad=True)
self.bg_bias = nn.Parameter(
init_value * torch.zeros(in_channels)[None, :, None, None], requires_grad=True)
self.grid_weights = torch.nn.Parameter(torch.ones((in_channels, grid_count, grid_count))[
None, :, :, :] / (grid_count*grid_count*in_channels), requires_grad=True)
def local_normalization(self, value):
zeroed_mean = value - \
(self.fg_local_mean *
self.grid_weights[None, None, :, :, None, None]).sum().squeeze()
# (fg_v * div_global_v + (1-fg_v) * div_v)
scaled_var = zeroed_mean * \
(self.bg_global_var/(self.fg_global_var + self.eps))
normalized_lg = scaled_var + \
(self.bg_local_mean *
self.grid_weights[None, None, :, :, None, None]).sum().squeeze()
return normalized_lg
def get_mean_std(self, img, mask, dim=[2, 3]):
sum = torch.sum(img*mask, dim=dim) # (B, C)
num = torch.sum(mask, dim=dim) # (B, C)
mu = sum / (num + self.eps)
mean = mu[:, :, None, None]
var = torch.sum(((img - mean)*mask) ** 2, dim=dim) / (num + self.eps)
var = var[:, :, None, None]
return mean, torch.sqrt(var+self.eps)
def compute_patch_statistics(self, img, mask):
means, stds = [], []
bs, dx, dy = img.shape[0], img.shape[2] // self.grid_count, img.shape[3] // self.grid_count
for h in range(self.grid_count):
cmeans, cstds = [], []
for w in range(self.grid_count):
ind = [h*dx, (h+1)*dx, w*dy, (w+1)*dy]
if h == self.grid_count - 1:
ind[1] = None
if w == self.grid_count - 1:
ind[-1] = None
m, v = self.get_mean_std(
img[:, :, ind[0]:ind[1], ind[2]:ind[3]], mask[:, :, ind[0]:ind[1], ind[2]:ind[3]], dim=[2, 3])
cmeans.append(m.reshape(m.shape[:2]))
cstds.append(v.reshape(v.shape[:2]))
means.append(torch.stack(cmeans))
stds.append(torch.stack(cstds))
return torch.stack(means), torch.stack(stds)
def compute_mean_var(self, x, dim=[2, 3]):
mean = x.float().mean(dim=dim)
var = torch.sqrt(x.float().var(dim=dim))
return mean, var
def forward(self, fg, bg, mask):
self.local_means, self.local_vars = self.compute_patch_statistics(
bg, (1-mask))
bg_mean, bg_var = self.get_mean_std(bg, 1 - mask)
zeroed_mean = (bg - bg_mean)
unscaled = zeroed_mean / bg_var
bg_normalized = unscaled * self.bg_var + self.bg_bias
fg_mean, fg_var = self.get_mean_std(fg, mask)
zeroed_mean = fg - fg_mean
unscaled = zeroed_mean / fg_var
mean_patched_back = (self.local_means.permute(
2, 3, 0, 1)*self.grid_weights).sum(dim=[2, 3])[:, :, None, None]
normalized = unscaled * bg_var + bg_mean
patch_normalized = unscaled * bg_var + mean_patched_back
fg_normalized = normalized * self.fg_var + self.fg_bias
fg_patch_normalized = patch_normalized * \
self.patched_fg_var + self.patched_fg_bias
fg_result = self.weights[0] * fg_normalized + \
self.weights[1] * fg_patch_normalized
composite = blend(fg_result, bg_normalized, mask)
return composite