berkaygkv54's picture
first push
19759e2
import json
import logging
import os
import pathlib
import re
from copy import deepcopy
from pathlib import Path
from packaging import version
import torch
import transformers
from .model import CLAP, convert_weights_to_fp16
from .openai import load_openai_model
from .pretrained import get_pretrained_url, download_pretrained
from .transform import image_transform
_MODEL_CONFIG_PATHS = [Path(__file__).parent / f"model_configs/"]
_MODEL_CONFIGS = {} # directory (model_name: config) of model architecture configs
def _natural_key(string_):
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
def _rescan_model_configs():
global _MODEL_CONFIGS
config_ext = (".json",)
config_files = []
for config_path in _MODEL_CONFIG_PATHS:
if config_path.is_file() and config_path.suffix in config_ext:
config_files.append(config_path)
elif config_path.is_dir():
for ext in config_ext:
config_files.extend(config_path.glob(f"*{ext}"))
for cf in config_files:
with open(cf, "r") as f:
model_cfg = json.load(f)
if all(a in model_cfg for a in ("embed_dim", "audio_cfg", "text_cfg")):
_MODEL_CONFIGS[cf.stem] = model_cfg
_MODEL_CONFIGS = {
k: v
for k, v in sorted(_MODEL_CONFIGS.items(), key=lambda x: _natural_key(x[0]))
}
_rescan_model_configs() # initial populate of model config registry
def load_state_dict(checkpoint_path: str, map_location="cpu", skip_params=True):
checkpoint = torch.load(checkpoint_path, map_location=map_location)
if isinstance(checkpoint, dict) and "state_dict" in checkpoint:
state_dict = checkpoint["state_dict"]
else:
state_dict = checkpoint
if skip_params:
if next(iter(state_dict.items()))[0].startswith("module"):
state_dict = {k[7:]: v for k, v in state_dict.items()}
# removing position_ids to maintain compatibility with latest transformers update
if version.parse(transformers.__version__) >= version.parse("4.31.0"):
del state_dict["text_branch.embeddings.position_ids"]
# for k in state_dict:
# if k.startswith('transformer'):
# v = state_dict.pop(k)
# state_dict['text_branch.' + k[12:]] = v
return state_dict
def create_model(
amodel_name: str,
tmodel_name: str,
pretrained: str = "",
precision: str = "fp32",
device: torch.device = torch.device("cpu"),
jit: bool = False,
force_quick_gelu: bool = False,
openai_model_cache_dir: str = os.path.expanduser("~/.cache/clip"),
skip_params=True,
pretrained_audio: str = "",
pretrained_text: str = "",
enable_fusion: bool = False,
fusion_type: str = 'None'
# pretrained_image: bool = False,
):
amodel_name = amodel_name.replace(
"/", "-"
) # for callers using old naming with / in ViT names
pretrained_orig = pretrained
pretrained = pretrained.lower()
if pretrained == "openai":
if amodel_name in _MODEL_CONFIGS:
logging.info(f"Loading {amodel_name} model config.")
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
else:
logging.error(
f"Model config for {amodel_name} not found; available models {list_models()}."
)
raise RuntimeError(f"Model config for {amodel_name} not found.")
logging.info(f"Loading pretrained ViT-B-16 text encoder from OpenAI.")
# Hard Code in model name
model_cfg["text_cfg"]["model_type"] = tmodel_name
model = load_openai_model(
"ViT-B-16",
model_cfg,
device=device,
jit=jit,
cache_dir=openai_model_cache_dir,
enable_fusion=enable_fusion,
fusion_type=fusion_type
)
# See https://discuss.pytorch.org/t/valueerror-attemting-to-unscale-fp16-gradients/81372
if precision == "amp" or precision == "fp32":
model = model.float()
else:
if amodel_name in _MODEL_CONFIGS:
logging.info(f"Loading {amodel_name} model config.")
model_cfg = deepcopy(_MODEL_CONFIGS[amodel_name])
else:
logging.error(
f"Model config for {amodel_name} not found; available models {list_models()}."
)
raise RuntimeError(f"Model config for {amodel_name} not found.")
if force_quick_gelu:
# override for use of QuickGELU on non-OpenAI transformer models
model_cfg["quick_gelu"] = True
# if pretrained_image:
# if 'timm_amodel_name' in model_cfg.get('vision_cfg', {}):
# # pretrained weight loading for timm models set via vision_cfg
# model_cfg['vision_cfg']['timm_model_pretrained'] = True
# else:
# assert False, 'pretrained image towers currently only supported for timm models'
model_cfg["text_cfg"]["model_type"] = tmodel_name
model_cfg["enable_fusion"] = enable_fusion
model_cfg["fusion_type"] = fusion_type
model = CLAP(**model_cfg)
if pretrained:
checkpoint_path = ""
url = get_pretrained_url(amodel_name, pretrained)
if url:
checkpoint_path = download_pretrained(url, root=openai_model_cache_dir)
elif os.path.exists(pretrained_orig):
checkpoint_path = pretrained_orig
if checkpoint_path:
logging.info(f"Loading pretrained {amodel_name}-{tmodel_name} weights ({pretrained}).")
ckpt = load_state_dict(checkpoint_path, skip_params=True)
model.load_state_dict(ckpt)
param_names = [n for n, p in model.named_parameters()]
for n in param_names:
print(n, "\t", "Loaded" if n in ckpt else "Unloaded")
else:
logging.warning(
f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
)
raise RuntimeError(
f"Pretrained weights ({pretrained}) not found for model {amodel_name}."
)
if pretrained_audio:
if amodel_name.startswith('PANN'):
if 'Cnn14_mAP' in pretrained_audio: # official checkpoint
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
audio_ckpt = audio_ckpt['model']
keys = list(audio_ckpt.keys())
for key in keys:
if 'spectrogram_extractor' not in key and 'logmel_extractor' not in key:
v = audio_ckpt.pop(key)
audio_ckpt['audio_branch.' + key] = v
elif os.path.basename(pretrained_audio).startswith('PANN'): # checkpoint trained via HTSAT codebase
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
audio_ckpt = audio_ckpt['state_dict']
keys = list(audio_ckpt.keys())
for key in keys:
if key.startswith('sed_model'):
v = audio_ckpt.pop(key)
audio_ckpt['audio_branch.' + key[10:]] = v
elif os.path.basename(pretrained_audio).startswith('finetuned'): # checkpoint trained via linear probe codebase
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
else:
raise ValueError('Unknown audio checkpoint')
elif amodel_name.startswith('HTSAT'):
if 'HTSAT_AudioSet_Saved' in pretrained_audio: # official checkpoint
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
audio_ckpt = audio_ckpt['state_dict']
keys = list(audio_ckpt.keys())
for key in keys:
if key.startswith('sed_model') and ('spectrogram_extractor' not in key
and 'logmel_extractor' not in key):
v = audio_ckpt.pop(key)
audio_ckpt['audio_branch.' + key[10:]] = v
elif os.path.basename(pretrained_audio).startswith('HTSAT'): # checkpoint trained via HTSAT codebase
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
audio_ckpt = audio_ckpt['state_dict']
keys = list(audio_ckpt.keys())
for key in keys:
if key.startswith('sed_model'):
v = audio_ckpt.pop(key)
audio_ckpt['audio_branch.' + key[10:]] = v
elif os.path.basename(pretrained_audio).startswith('finetuned'): # checkpoint trained via linear probe codebase
audio_ckpt = torch.load(pretrained_audio, map_location='cpu')
else:
raise ValueError('Unknown audio checkpoint')
else:
raise f'this audio encoder pretrained checkpoint is not support'
model.load_state_dict(audio_ckpt, strict=False)
logging.info(f"Loading pretrained {amodel_name} weights ({pretrained_audio}).")
param_names = [n for n, p in model.named_parameters()]
for n in param_names:
print(n, "\t", "Loaded" if n in audio_ckpt else "Unloaded")
model.to(device=device)
if precision == "fp16":
assert device.type != "cpu"
convert_weights_to_fp16(model)
if jit:
model = torch.jit.script(model)
return model, model_cfg
def create_model_and_transforms(
model_name: str,
pretrained: str = "",
precision: str = "fp32",
device: torch.device = torch.device("cpu"),
jit: bool = False,
force_quick_gelu: bool = False,
# pretrained_image: bool = False,
):
model = create_model(
model_name,
pretrained,
precision,
device,
jit,
force_quick_gelu=force_quick_gelu,
# pretrained_image=pretrained_image
)
preprocess_train = image_transform(model.visual.image_size, is_train=True)
preprocess_val = image_transform(model.visual.image_size, is_train=False)
return model, preprocess_train, preprocess_val
def list_models():
"""enumerate available model architectures based on config files"""
return list(_MODEL_CONFIGS.keys())
def add_model_config(path):
"""add model config path or file and update registry"""
if not isinstance(path, Path):
path = Path(path)
_MODEL_CONFIG_PATHS.append(path)
_rescan_model_configs()