Spaces:
Runtime error
Runtime error
File size: 17,452 Bytes
f89848b 95792cc f89848b 7e65dc3 f89848b 95792cc f89848b 95166f2 f89848b 95792cc f89848b 25436e1 08a4871 25436e1 95792cc f89848b 95166f2 f89848b 95166f2 f89848b 38c5edb f89848b 38c5edb f89848b 38c5edb f89848b 38c5edb bed30b4 f89848b 38c5edb f89848b 38c5edb f89848b 25436e1 f89848b 25436e1 f89848b 25436e1 38c5edb 25436e1 15c5469 95792cc bed30b4 95792cc bed30b4 15c5469 bed30b4 15c5469 95792cc f89848b 95792cc 38c5edb 95792cc 7e65dc3 95792cc 7e65dc3 95792cc 38c5edb 95792cc 04133db f89848b 7e65dc3 95792cc f89848b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
import os
import random
import string
import gradio as gr
import torch
from transformers import pipeline, set_seed
from transformers import AutoTokenizer, AutoModelForCausalLM
import logging
# Monkey patch
import inspect
from gradio import routes
from typing import List, Type
def get_types(cls_set: List[Type], component: str):
docset = []
types = []
if component == "input":
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[1].split(":")[-1])
types.append(doc_lines[1].split(")")[0].split("(")[-1])
else:
for cls in cls_set:
doc = inspect.getdoc(cls)
doc_lines = doc.split("\n")
docset.append(doc_lines[-1].split(":")[-1])
types.append(doc_lines[-1].split(")")[0].split("(")[-1])
return docset, types
routes.get_types = get_types
logger = logging.getLogger()
logger.addHandler(logging.StreamHandler())
DEBUG = os.environ.get("DEBUG", "false")[0] in "ty1"
HF_AUTH_TOKEN = os.environ.get("HF_AUTH_TOKEN", None)
DEVICE = os.environ.get("DEVICE", "cpu") # cuda:0
if DEVICE != "cpu" and not torch.cuda.is_available():
DEVICE = "cpu"
logger.info(f"DEVICE {DEVICE}")
DTYPE = torch.float32 if DEVICE == "cpu" else torch.float16
MODEL_NAME = os.environ.get("MODEL_NAME", "bertin-project/bertin-gpt-j-6B")
MODEL_REVISION = os.environ.get("MODEL_REVISION", "main")
MAX_LENGTH = int(os.environ.get("MAX_LENGTH", 1024))
HEADER_INFO = """
# BERTIN GPT-J-6B
Spanish BERTIN GPT-J-6B Model.
""".strip()
LOGO = "https://huggingface.co/bertin-project/bertin-roberta-base-spanish/resolve/main/images/bertin.png"
HEADER = f"""
<link href="https://fonts.googleapis.com/css2?family=Roboto:wght@300&display=swap%22%20rel=%22stylesheet%22" rel="stylesheet">
<style>
.ltr,
textarea {{
font-family: Roboto !important;
text-align: left;
direction: ltr !important;
}}
.ltr-box {{
border-bottom: 1px solid #ddd;
padding-bottom: 20px;
}}
.rtl {{
text-align: left;
direction: ltr !important;
}}
span.result-text {{
padding: 3px 3px;
line-height: 32px;
}}
span.generated-text {{
background-color: rgb(118 200 147 / 13%);
}}
</style>
<div align=center>
<img src="{LOGO}" width=150/>
# BERTIN GPT-J-6B
BERTIN proporciona una serie de modelos de lenguaje en Español entrenados en abierto.
Este modelo ha sido entrenado con [Mesh Transformer JAX](https://github.com/kingoflolz/mesh-transformer-jax) en TPUs proporcionadas por Google a través del programa Tensor Research Cloud, a partir del modelo [GPT-J de EleutherAI](https://huggingface.co/EleutherAI/gpt-j-6B) con el corpus [mC4-es-sampled (gaussian)](https://huggingface.co/datasets/bertin-project/mc4-es-sampled). Esta demo funciona sobre una GPU proporcionada por HuggingFace.
</div>
"""
FOOTER = """
<div align=center>
Para más información, visite el repositorio del modelo: <a href="https://huggingface.co/bertin-project/bertin-gpt-j-6B">BERTIN-GPT-J-6B</a>.
<img src="https://visitor-badge.glitch.me/badge?page_id=spaces/bertin-project/bertin-gpt-j-6B"/>
<div align=center>
""".strip()
EXAMPLES = [
"",
"Érase una vez,",
"¿Cuál es la capital de Francia? Respuesta:",
"""Los templos egipcios fueron construidos para el culto oficial de los dioses y la conmemoración de los faraones del Antiguo Egipto en las regiones bajo su dominio. Los templos eran vistos como el hogar de los dioses o faraones deificados a quienes eran dedicados, y en ellos los faraones y el clero egipcio llevaban a cabo diversos rituales, las funciones centrales de la religión egipcia: realizar ofrendas a sus dioses, recrear pasajes mitológicos mediante festivales y protegerse de las fuerzas del caos. Estos rituales eran vistos como necesarios para que los dioses mantuvieran la maat, el orden divino del universo.
El cuidado del hogar de los dioses era obligación de los faraones, que dedicaron ingentes cantidades de recursos para la construcción y el mantenimiento de los templos. Por necesidad, los faraones delegaban la mayoría de los rituales en una amplia casta sacerdotal, aunque la mayor parte del pueblo llano permanecía al margen de la participación directa en las ceremonias por tener prohibido el acceso a las zonas más sagradas de los templos. A pesar de ello, el templo siempre fue un importante centro religioso para todos los egipcios, que iban a ellos a rezar, realizar ofrendas y buscar la guía de los oráculos.
Pregunta: ¿Quién cuidaba del hogar los dioses?
Respuesta:""",
]
AGENT = "BERTIN"
USER = "ENTREVISTADOR"
CONTEXT = """La siguiente conversación es un extracto de una entrevista a {AGENT} celebrada en Madrid para Radio Televisión Española:
{USER}: Bienvenido, {AGENT}. Un placer tenerlo hoy con nosotros.
{AGENT}: Gracias. El placer es mío."""
class Normalizer:
def remove_repetitions(self, text):
"""Remove repetitions"""
first_ocurrences = []
for sentence in text.split("."):
if sentence not in first_ocurrences:
first_ocurrences.append(sentence)
return '.'.join(first_ocurrences)
def trim_last_sentence(self, text):
"""Trim last sentence if incomplete"""
return text[:text.rfind(".") + 1]
def clean_txt(self, text):
return self.trim_last_sentence(self.remove_repetitions(text))
class TextGeneration:
def __init__(self):
self.tokenizer = None
self.generator = None
self.task = "text-generation"
self.model_name_or_path = MODEL_NAME
set_seed(42)
def load(self):
logger.info("Loading model...")
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_name_or_path, revision=MODEL_REVISION, use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name_or_path, revision=MODEL_REVISION,
use_auth_token=HF_AUTH_TOKEN if HF_AUTH_TOKEN else None,
pad_token_id=self.tokenizer.eos_token_id, eos_token_id=self.tokenizer.eos_token_id,
torch_dtype=DTYPE, low_cpu_mem_usage=False if DEVICE == "cpu" else True
).to(device=DEVICE, non_blocking=False)
_ = self.model.eval()
device_number = -1 if DEVICE == "cpu" else int(DEVICE.split(":")[-1])
self.generator = pipeline(self.task, model=self.model, tokenizer=self.tokenizer, device=device_number)
logger.info("Loading model done.")
# with torch.no_grad():
# tokens = tokenizer.encode(prompt, return_tensors='pt').to(device=device, non_blocking=True)
# gen_tokens = self.model.generate(tokens, do_sample=True, temperature=0.8, max_length=128)
# generated = tokenizer.batch_decode(gen_tokens)[0]
# return generated
def generate(self, text, generation_kwargs, previous_text=None):
input_text = previous_text or text
max_length = len(self.tokenizer(input_text)["input_ids"]) + generation_kwargs["max_length"]
generation_kwargs["max_length"] = min(max_length, self.model.config.n_positions)
generated_text = None
if input_text:
for _ in range(10):
generated_text = self.generator(
input_text,
**generation_kwargs,
)[0]["generated_text"]
if generated_text.strip().startswith(input_text):
generated_text = generated_text.replace(input_text, "", 1).strip()
if generation_kwargs["do_clean"]:
generated_text = cleaner.clean_txt(generated_text)
if generated_text:
if previous_text and previous_text != text:
diff = [
(text, None), (previous_text.replace(text, " ", 1).strip(), " "), (generated_text, AGENT)
]
else:
diff = [(text, None), (generated_text, AGENT)]
return (
input_text + " " + generated_text,
diff
)
if not generated_text:
return (
"",
[("Tras 10 intentos BERTIN no generó nada. Pruebe cambiando las opciones.", "ERROR")]
)
return (
"",
[("Debe escribir algo primero.", "ERROR")]
)
#@st.cache(hash_funcs={torch.nn.parameter.Parameter: lambda _: None})
#@st.cache(allow_output_mutation=True)
#@st.cache(allow_output_mutation=True, hash_funcs={TextGeneration: lambda _: None})
def load_text_generator():
text_generator = TextGeneration()
text_generator.load()
return text_generator
cleaner = Normalizer()
generator = load_text_generator()
def complete_with_gpt(text, max_length, top_k, top_p, temperature, do_sample, do_clean):
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"do_clean": do_clean,
}
return generator.generate(text, generation_kwargs)
def expand_with_gpt(hidden, text, max_length, top_k, top_p, temperature, do_sample, do_clean):
generation_kwargs = {
"max_length": max_length,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"do_clean": do_clean,
}
return generator.generate(text, generation_kwargs, previous_text=hidden)
def chat_with_gpt(agent, user, context, user_message, history, max_length, top_k, top_p, temperature, do_sample, do_clean):
# agent = AGENT
# user = USER
generation_kwargs = {
"max_length": 25,
"top_k": top_k,
"top_p": top_p,
"temperature": temperature,
"do_sample": do_sample,
"do_clean": do_clean,
# "num_return_sequences": 1,
# "return_full_text": False,
}
message = user_message.split(" ", 1)[0].capitalize() + " " + user_message.split(" ", 1)[-1]
history = history or [] #[(f"{user}: Bienvenido. Encantado de tenerle con nosotros.", f"{agent}: Un placer, muchas gracias por la invitación.")]
context = context.format(USER=user or USER, AGENT=agent or AGENT).strip()
if context[-1] not in ".:":
context += "."
context_length = len(context.split())
history_take = 0
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
while len(history_context.split()) > generator.model.config.n_positions - (generation_kwargs["max_length"] + context_length):
history_take += 1
history_context = "\n".join(f"{user}: {history_message.capitalize()}.\n{agent}: {history_response}." for history_message, history_response in history[-len(history) + history_take:])
if history_take >= generator.model.config.n_positions:
break
context += history_context
for _ in range(5):
prompt = f"{context}\n\n{user}: {message}.\n"
response = generator.generate(prompt, generation_kwargs)[0]
if DEBUG:
print("\n-----\n" + response + "\n-----\n")
# response = response.split("\n")[-1]
# if agent in response and response.split(agent)[-1]:
# response = response.split(agent)[-1]
# if user in response and response.split(user)[-1]:
# response = response.split(user)[-1]
# Take the first response
response = [
r for r in response.replace(prompt, "").split(f"{AGENT}:") if r.strip()
][0].split(USER)[0].replace(f"{AGENT}:", "\n").strip()
if response[0] in string.punctuation:
response = response[1:].strip()
if response.strip().startswith(f"{user}: {message}"):
response = response.strip().split(f"{user}: {message}")[-1]
if response.replace(".", "").strip() and message.replace(".", "").strip() != response.replace(".", "").strip():
break
if DEBUG:
print()
print("CONTEXT:")
print(context)
print()
print("MESSAGE")
print(message)
print()
print("RESPONSE:")
print(response)
if not response.strip():
response = random.choice(["No sé muy bien cómo contestar a eso.", "No estoy seguro.", "Prefiero no contestar.", "Ni idea.", "¿Podemos cambiar de tema?"])
history.append((user_message, response))
return history, history, ""
with gr.Blocks() as demo:
gr.Markdown(HEADER)
with gr.Row():
with gr.Group():
with gr.Box():
gr.Markdown("Opciones")
max_length = gr.Slider(
label='Longitud máxima',
# help="Número máximo (aproximado) de palabras a generar.",
minimum=1,
maximum=MAX_LENGTH,
value=50,
step=1
)
top_k = gr.Slider(
label='Top-k',
# help="Número de palabras con alta probabilidad a mantener para el filtrado `top-k`",
minimum=40,
maximum=80,
value=50,
step=1
)
top_p = gr.Slider(
label='Top-p',
# help="Solo las palabras más probables con probabilidades que sumen `top_p` o más se mantienen para la generación.",
minimum=0.0,
maximum=1.0,
value=0.95,
step=0.01
)
temperature = gr.Slider(
label='Temperatura',
# help="Valor utilizado para modular las probabilidades de las siguientes palabras generadas.",
minimum=0.1,
maximum=10.0,
value=0.8,
step=0.05
)
do_sample = gr.Checkbox(
label='¿Muestrear?',
value = True,
# options=(True, False),
# help="Si no se muestrea se usará una decodificación voraz (_greedy_).",
)
do_clean = gr.Checkbox(
label='¿Limpiar texto?',
value = True,
# options=(True, False),
# help="Si eliminar o no las palabras repetidas y recortar las últimas frases sin terminar.",
)
with gr.Column():
with gr.Tabs():
with gr.TabItem("Generar"):
textbox = gr.Textbox(label="Texto", placeholder="Escriba algo (o seleccione un ejemplo) y pulse 'Generar'...", lines=8)
examples = gr.Dropdown(label="Ejemplos", choices=EXAMPLES, value=None, type="value")
hidden = gr.Textbox(visible=False, show_label=False)
with gr.Box():
# output = gr.Markdown()
output = gr.HighlightedText(label="Resultado", combine_adjacent=True, color_map={AGENT: "green", "ERROR": "red", " ": "blue"})
with gr.Row():
generate_btn = gr.Button("Generar")
generate_btn.click(complete_with_gpt, inputs=[textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output])
expand_btn = gr.Button("Añadir")
expand_btn.click(expand_with_gpt, inputs=[hidden, textbox, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output])
edit_btn = gr.Button("Editar", variant="secondary")
edit_btn.click(lambda x: (x, "", []), inputs=[hidden], outputs=[textbox, hidden, output])
clean_btn = gr.Button("Borrar", variant="secondary")
clean_btn.click(lambda: ("", "", [], ""), inputs=[], outputs=[textbox, hidden, output, examples])
examples.change(lambda x: x, inputs=[examples], outputs=[textbox])
with gr.TabItem("Charlar") as tab_chat:
tab_chat.select(lambda: 25, inputs=[], outputs=[max_length])
context = gr.Textbox(label="Contexto", value=CONTEXT, lines=5)
with gr.Row():
agent = gr.Textbox(label="Agente", value=AGENT)
user = gr.Textbox(label="Usuario", value=USER)
history = gr.Variable(value=[])
chatbot = gr.Chatbot(color_map=("green", "gray"))
with gr.Row():
message = gr.Textbox(placeholder="Escriba aquí su mensaje y pulse 'Enviar'", show_label=False)
chat_btn = gr.Button("Enviar")
chat_btn.click(chat_with_gpt, inputs=[agent, user, context, message, history, max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[chatbot, history, message])
gr.Markdown(FOOTER)
with gr.Interface(lambda: None, inputs=["text", max_length, top_k, top_p, temperature, do_sample, do_clean], outputs=[hidden, output]) as iface:
demo.examples = None
demo.predict_durations = []
demo.input_components = iface.input_components
demo.output_components = iface.output_components
demo.launch()
|