background-removal-arena / rating_systems.py
tdurbor's picture
Use confidence interval and seed to have reproducible scoring
892f774
raw
history blame
3.44 kB
# This code is copied from the following source:
# https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/monitor/rating_systems.py
import math
import pandas as pd
import numpy as np
from sqlalchemy.orm import Session
import pandas as pd
from scipy.special import expit
def get_matchups_models(df):
n_rows = len(df)
model_indices, models = pd.factorize(pd.concat([df["model_a"], df["model_b"]]))
matchups = np.column_stack([model_indices[:n_rows], model_indices[n_rows:]])
return matchups, models.to_list()
def preprocess_for_elo(df):
"""
in Elo we want numpy arrays for matchups and outcomes
matchups: int32 (N,2) contains model ids for the competitors in a match
outcomes: float64 (N,) contains 1.0, 0.5, or 0.0 representing win, tie, or loss for model_a
"""
matchups, models = get_matchups_models(df)
outcomes = np.full(len(df), 0.5)
outcomes[df["winner"] == "model_a"] = 1.0
outcomes[df["winner"] == "model_b"] = 0.0
return matchups, outcomes, models
def compute_elo(df, k=4.0, base=10.0, init_rating=1000.0, scale=400.0):
matchups, outcomes, models = preprocess_for_elo(df)
alpha = math.log(base) / scale
ratings = np.full(shape=(len(models),), fill_value=init_rating)
for (model_a_idx, model_b_idx), outcome in zip(matchups, outcomes):
prob = 1.0 / (
1.0 + math.exp(alpha * (ratings[model_b_idx] - ratings[model_a_idx]))
)
update = k * (outcome - prob)
ratings[model_a_idx] += update
ratings[model_b_idx] -= update
return {model: ratings[idx] for idx, model in enumerate(models)}
def compute_bootstrap_elo(
df, num_round=1000, k=4.0, base=10.0, init_rating=1000.0, scale=400.0
):
matchups, outcomes, models = preprocess_for_elo(df)
sample_indices = np.random.randint(low=0, high=len(df), size=(len(df), num_round))
ratings = fit_vectorized_elo(
matchups, outcomes, sample_indices, len(models), k, base, init_rating, scale
)
df = pd.DataFrame(data=ratings, columns=models)
return df[df.median().sort_values(ascending=False).index]
def fit_vectorized_elo(
matchups,
outcomes,
sample_indices,
num_models,
k=4.0,
base=10.0,
init_rating=1000.0,
scale=400.0,
):
"""fit multiple sets of Elo ratings on different samples of the data at the same time"""
alpha = math.log(base) / scale
num_samples = sample_indices.shape[1]
ratings = np.zeros(shape=(num_samples, num_models), dtype=np.float64)
# iterate over the rows of sample_indices, each column is an index into a match in the input arrays
sample_range = np.arange(num_samples)
for matchup_indices in sample_indices:
model_a_indices = matchups[matchup_indices, 0]
model_b_indices = matchups[matchup_indices, 1]
model_a_ratings = ratings[sample_range, model_a_indices]
model_b_ratings = ratings[sample_range, model_b_indices]
sample_outcomes = outcomes[matchup_indices]
probs = expit(alpha * (model_a_ratings - model_b_ratings))
updates = k * (sample_outcomes - probs)
ratings[sample_range, model_a_indices] += updates
ratings[sample_range, model_b_indices] -= updates
return ratings + init_rating
def get_median_elo_from_bootstrap(bootstrap_df):
median = dict(bootstrap_df.quantile(0.5))
median = {k: int(v + 0.5) for k, v in median.items()}
return median