|
from datasets import Dataset, Features, Value, Image |
|
from huggingface_hub import HfApi |
|
import os |
|
from collections import defaultdict |
|
import pandas as pd |
|
import argparse |
|
|
|
def upload_to_dataset(original_images_dir, processed_images_dir, dataset_name, dry_run=False): |
|
|
|
features = Features({ |
|
"original_image": Image(), |
|
"clipdrop_image": Image(), |
|
"bria_image": Image(), |
|
"photoroom_image": Image(), |
|
"removebg_image": Image(), |
|
"original_filename": Value("string") |
|
}) |
|
|
|
|
|
data = defaultdict(lambda: { |
|
"clipdrop_image": None, |
|
"bria_image": None, |
|
"photoroom_image": None, |
|
"removebg_image": None |
|
}) |
|
|
|
|
|
for root, _, files in os.walk(original_images_dir): |
|
for f in files: |
|
if f.endswith(('.png', '.jpg', '.jpeg')): |
|
original_image_path = os.path.join(root, f) |
|
data[f]["original_image"] = original_image_path |
|
data[f]["original_filename"] = f |
|
|
|
|
|
for source in ["clipdrop", "bria", "photoroom", "removebg"]: |
|
|
|
for ext in ['.png', '.jpg']: |
|
processed_image_filename = os.path.splitext(f)[0] + ext |
|
source_image_path = os.path.join(processed_images_dir, source, processed_image_filename) |
|
|
|
if os.path.exists(source_image_path): |
|
data[f][f"{source}_image"] = source_image_path |
|
break |
|
|
|
|
|
dataset_dict = { |
|
"original_image": [], |
|
"clipdrop_image": [], |
|
"bria_image": [], |
|
"photoroom_image": [], |
|
"removebg_image": [], |
|
"original_filename": [] |
|
} |
|
|
|
for filename, entry in data.items(): |
|
if "original_image" in entry: |
|
dataset_dict["original_image"].append(entry["original_image"]) |
|
dataset_dict["clipdrop_image"].append(entry["clipdrop_image"]) |
|
dataset_dict["bria_image"].append(entry["bria_image"]) |
|
dataset_dict["photoroom_image"].append(entry["photoroom_image"]) |
|
dataset_dict["removebg_image"].append(entry["removebg_image"]) |
|
dataset_dict["original_filename"].append(filename) |
|
|
|
|
|
df = pd.DataFrame.from_dict(dataset_dict) |
|
df.to_csv("image_data.csv", index=False) |
|
|
|
|
|
dataset = Dataset.from_dict(dataset_dict, features=features) |
|
|
|
if dry_run: |
|
print("Dry run: Dataset prepared but not pushed to Hugging Face Hub.") |
|
print(df.head()) |
|
else: |
|
|
|
api = HfApi() |
|
dataset.push_to_hub(dataset_name, token=api.token, private=True) |
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser(description="Upload images to a Hugging Face dataset.") |
|
parser.add_argument("original_images_dir", type=str, help="Directory containing the original images.") |
|
parser.add_argument("processed_images_dir", type=str, help="Directory containing the processed images with subfolders for each model.") |
|
parser.add_argument("dataset_name", type=str, help="Name of the dataset to upload to Hugging Face Hub.") |
|
parser.add_argument("--dry-run", action="store_true", help="Perform a dry run without uploading to the hub.") |
|
|
|
args = parser.parse_args() |
|
|
|
upload_to_dataset(args.original_images_dir, args.processed_images_dir, args.dataset_name, dry_run=args.dry_run) |
|
|