|
from dataclasses import dataclass, make_dataclass |
|
from enum import Enum |
|
import json |
|
import logging |
|
from datetime import datetime |
|
import pandas as pd |
|
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") |
|
|
|
|
|
def parse_iso8601_datetime(date_str): |
|
if date_str.endswith('Z'): |
|
date_str = date_str[:-1] + '+00:00' |
|
return datetime.fromisoformat(date_str) |
|
|
|
def parse_datetime(datetime_str): |
|
formats = [ |
|
"%Y-%m-%dT%H-%M-%S.%f", |
|
"%Y-%m-%dT%H:%M:%S.%f", |
|
"%Y-%m-%dT%H %M %S.%f", |
|
] |
|
|
|
for fmt in formats: |
|
try: |
|
return datetime.strptime(datetime_str, fmt) |
|
except ValueError: |
|
continue |
|
|
|
logging.error(f"No valid date format found for: {datetime_str}") |
|
return datetime(1970, 1, 1) |
|
|
|
|
|
def load_json_data(file_path): |
|
"""Safely load JSON data from a file.""" |
|
try: |
|
with open(file_path, "r") as file: |
|
return json.load(file) |
|
except json.JSONDecodeError: |
|
print(f"Error reading JSON from {file_path}") |
|
return None |
|
|
|
|
|
def fields(raw_class): |
|
return [v for k, v in raw_class.__dict__.items() if k[:2] != "__" and k[-2:] != "__"] |
|
|
|
|
|
column_map = { |
|
"T": "T", |
|
"model": "Model", |
|
"type": "Model Type", |
|
"size_range": "Size Range", |
|
"complete": "Complete", |
|
"instruct": "Instruct", |
|
"average": "Average", |
|
"elo_mle": "Elo Rating", |
|
"link": "Link", |
|
"act_param": "#Act Params (B)", |
|
"size": "#Params (B)", |
|
"moe": "MoE", |
|
"lazy": "Lazy", |
|
"openness": "Openness", |
|
|
|
} |
|
|
|
type_map = { |
|
"🔶": "🔶 Chat Models (RLHF, DPO, IFT, ...)", |
|
"🟢": "🟢 Base Models" |
|
} |
|
|
|
moe_map = { |
|
True: "MoE", |
|
False: "Dense" |
|
} |
|
|
|
|
|
|
|
@dataclass(frozen=True) |
|
class ColumnContent: |
|
name: str |
|
type: str |
|
displayed_by_default: bool |
|
hidden: bool = False |
|
never_hidden: bool = False |
|
dummy: bool = False |
|
|
|
|
|
auto_eval_column_dict = [] |
|
|
|
auto_eval_column_dict.append(["T", ColumnContent, ColumnContent(column_map["T"], "str", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["model", ColumnContent, ColumnContent(column_map["model"], "markdown", True, never_hidden=True)]) |
|
auto_eval_column_dict.append(["type", ColumnContent, ColumnContent(column_map["type"], "str", False, True)]) |
|
auto_eval_column_dict.append(["size_range", ColumnContent, ColumnContent(column_map["size_range"], "str", False, True)]) |
|
|
|
auto_eval_column_dict.append(["complete", ColumnContent, ColumnContent(column_map["complete"], "number", True)]) |
|
auto_eval_column_dict.append(["instruct", ColumnContent, ColumnContent(column_map["instruct"], "number", True)]) |
|
auto_eval_column_dict.append(["average", ColumnContent, ColumnContent(column_map["average"], "number", True)]) |
|
auto_eval_column_dict.append(["elo_mle", ColumnContent, ColumnContent(column_map["elo_mle"], "number", True)]) |
|
|
|
|
|
auto_eval_column_dict.append(["act_param", ColumnContent, ColumnContent(column_map["act_param"], "number", True)]) |
|
auto_eval_column_dict.append(["link", ColumnContent, ColumnContent(column_map["link"], "str", False, True)]) |
|
auto_eval_column_dict.append(["size", ColumnContent, ColumnContent(column_map["size"], "number", False)]) |
|
auto_eval_column_dict.append(["lazy", ColumnContent, ColumnContent(column_map["lazy"], "bool", False, True)]) |
|
auto_eval_column_dict.append(["moe", ColumnContent, ColumnContent(column_map["moe"], "str", False, True)]) |
|
auto_eval_column_dict.append(["openness", ColumnContent, ColumnContent(column_map["openness"], "str", False, True)]) |
|
|
|
|
|
|
|
AutoEvalColumn = make_dataclass("AutoEvalColumn", auto_eval_column_dict, frozen=True) |
|
|
|
|
|
@dataclass(frozen=True) |
|
class EvalQueueColumn: |
|
model_link = ColumnContent("link", "markdown", True) |
|
model_name = ColumnContent("model", "str", True) |
|
|
|
@dataclass |
|
class ModelDetails: |
|
name: str |
|
symbol: str = "" |
|
|
|
|
|
|
|
COLS = [c.name for c in fields(AutoEvalColumn)] |
|
TYPES = [c.type for c in fields(AutoEvalColumn)] |
|
|
|
EVAL_COLS = [c.name for c in fields(EvalQueueColumn)] |
|
EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)] |
|
|
|
|
|
NUMERIC_INTERVALS = { |
|
"?": pd.Interval(-1, 0, closed="right"), |
|
"~1.5": pd.Interval(0, 2, closed="right"), |
|
"~3": pd.Interval(2, 4, closed="right"), |
|
"~7": pd.Interval(4, 9, closed="right"), |
|
"~13": pd.Interval(9, 20, closed="right"), |
|
"~35": pd.Interval(20, 45, closed="right"), |
|
"~60": pd.Interval(45, 70, closed="right"), |
|
"70+": pd.Interval(70, 10000, closed="right"), |
|
} |
|
|