test / cli /create-previews.py
bilegentile's picture
Upload folder using huggingface_hub
c19ca42 verified
#!/usr/bin/env python
# pylint: disable=no-member
import os
import re
import json
import time
import logging
import importlib
import asyncio
import argparse
from pathlib import Path
from util import Map, log
from sdapi import get, post, close
from generate import generate # pylint: disable=import-error
grid = importlib.import_module('image-grid').grid
options = Map({
# used by extra networks
'prompt': 'photo of <keyword> <embedding>, photograph, posing, pose, high detailed, intricate, elegant, sharp focus, skin texture, looking forward, facing camera, 135mm, shot on dslr, canon 5d, 4k, modelshoot style, cinematic lighting',
# used by models
'prompts': [
('photo citiscape', 'cityscape during night, photorealistic, high detailed, sharp focus, depth of field, 4k'),
('photo car', 'photo of a sports car, high detailed, sharp focus, dslr, cinematic lighting, realistic'),
('photo woman', 'portrait photo of beautiful woman, high detailed, dslr, 35mm'),
('photo naked', 'full body photo of beautiful sexy naked woman, high detailed, dslr, 35mm'),
('photo taylor', 'portrait photo of beautiful woman taylor swift, high detailed, sharp focus, depth of field, dslr, 35mm <lora:taylor-swift:1>'),
('photo ti-mia', 'portrait photo of beautiful woman "ti-mia", naked, high detailed, dslr, 35mm'),
('photo ti-vlado', 'portrait photo of man "ti-vlado", high detailed, dslr, 35mm'),
('photo lora-vlado', 'portrait photo of man vlado, high detailed, dslr, 35mm <lora:vlado-original:1>'),
('wlop', 'a stunning portrait of sexy teen girl in a wet t-shirt, vivid color palette, digital painting, octane render, highly detailed, particles, light effect, volumetric lighting, art by wlop'),
('greg rutkowski', 'beautiful woman, high detailed, sharp focus, depth of field, 4k, art by greg rutkowski'),
('carne griffiths', 'beautiful woman taylor swift, high detailed, sharp focus, depth of field, art by carne griffiths <lora:taylor-swift:1>'),
('carne griffiths', 'man vlado, high detailed, sharp focus, depth of field, art by carne griffiths <lora:vlado-full:1>'),
],
# save format
'format': '.jpg',
# used by generate script
'paths': {
"root": "/mnt/c/Users/mandi/OneDrive/Generative/Generate",
"generate": "image",
"upscale": "upscale",
"grid": "grid",
},
# generate params
'generate': {
'restore_faces': True,
'prompt': '',
'negative_prompt': 'foggy, blurry, blurred, duplicate, ugly, mutilated, mutation, mutated, out of frame, bad anatomy, disfigured, deformed, censored, low res, low resolution, watermark, text, poorly drawn face, poorly drawn hands, signature',
'steps': 20,
'batch_size': 2,
'n_iter': 1,
'seed': -1,
'sampler_name': 'UniPC',
'cfg_scale': 6,
'width': 512,
'height': 512,
},
'lora': {
'strength': 1.0,
},
'hypernetwork': {
'keyword': '',
'strength': 1.0,
},
})
def preview_exists(folder, model):
model = os.path.splitext(model)[0]
for suffix in ['', '.preview']:
for ext in ['.jpg', '.png', '.webp']:
fn = os.path.join(folder, f'{model}{suffix}{ext}')
if os.path.exists(fn):
return True
return False
async def preview_models(params):
data = await get('/sdapi/v1/sd-models')
allmodels = [m['title'] for m in data]
models = []
excluded = []
for m in allmodels: # loop through all registered models
ok = True
for e in params.exclude: # check if model is excluded
if e in m:
excluded.append(m)
ok = False
break
if ok:
short = m.split(' [')[0]
short = short.replace('.ckpt', '').replace('.safetensors', '')
models.append(short)
if len(params.input) > 0: # check if model is included in cmd line
filtered = []
for m in params.input:
if m in models:
filtered.append(m)
else:
log.error({ 'model not found': m })
return
models = filtered
log.info({ 'models preview' })
log.info({ 'models': len(models), 'excluded': len(excluded) })
opt = await get('/sdapi/v1/options')
log.info({ 'total jobs': len(models) * options.generate.batch_size, 'per-model': options.generate.batch_size })
log.info(json.dumps(options, indent=2))
for model in models:
if preview_exists(opt['ckpt_dir'], model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'model preview exists': model })
continue
fn = os.path.join(opt['ckpt_dir'], os.path.splitext(model)[0] + options.format)
log.info({ 'model load': model })
opt['sd_model_checkpoint'] = model
del opt['sd_lora']
del opt['sd_lyco']
await post('/sdapi/v1/options', opt)
opt = await get('/sdapi/v1/options')
images = []
labels = []
t0 = time.time()
for label, p in options.prompts:
options.generate.prompt = p
log.info({ 'model generating': model, 'label': label, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(label)
else:
log.error({ 'model': model, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'model preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
opt = await get('/sdapi/v1/options')
if opt['sd_model_checkpoint'] != params.model:
log.info({ 'model set default': params.model })
opt['sd_model_checkpoint'] = params.model
del opt['sd_lora']
del opt['sd_lyco']
await post('/sdapi/v1/options', opt)
async def lora(params):
opt = await get('/sdapi/v1/options')
folder = opt['lora_dir']
if not os.path.exists(folder):
log.error({ 'lora directory not found': folder })
return
models1 = list(Path(folder).glob('**/*.safetensors'))
models2 = list(Path(folder).glob('**/*.ckpt'))
models = [os.path.splitext(f)[0] for f in models1 + models2]
log.info({ 'loras': len(models) })
for model in models:
if preview_exists('', model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'lora preview exists': model })
continue
fn = model + options.format
model = os.path.basename(model)
images = []
labels = []
t0 = time.time()
keywords = re.sub(r'\d', '', model)
keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ')
keyword = '\"' + '\" \"'.join(keywords) + '\"'
options.generate.prompt = options.prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt += f' <lora:{model}:{options.lora.strength}>'
log.info({ 'lora generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'lora': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'lora preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def lyco(params):
opt = await get('/sdapi/v1/options')
folder = opt['lyco_dir']
if not os.path.exists(folder):
log.error({ 'lyco directory not found': folder })
return
models1 = list(Path(folder).glob('**/*.safetensors'))
models2 = list(Path(folder).glob('**/*.ckpt'))
models = [os.path.splitext(f)[0] for f in models1 + models2]
log.info({ 'lycos': len(models) })
for model in models:
if preview_exists('', model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'lyco preview exists': model })
continue
fn = model + options.format
model = os.path.basename(model)
images = []
labels = []
t0 = time.time()
keywords = re.sub(r'\d', '', model)
keywords = keywords.replace('-v', ' ').replace('-', ' ').strip().split(' ')
keyword = '\"' + '\" \"'.join(keywords) + '\"'
options.generate.prompt = options.prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt += f' <lyco:{model}:{options.lora.strength}>'
log.info({ 'lyco generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'lyco': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'lyco preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def hypernetwork(params):
opt = await get('/sdapi/v1/options')
folder = opt['hypernetwork_dir']
if not os.path.exists(folder):
log.error({ 'hypernetwork directory not found': folder })
return
models = [os.path.splitext(f)[0] for f in Path(folder).glob('**/*.pt')]
log.info({ 'hypernetworks': len(models) })
for model in models:
if preview_exists(folder, model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'hypernetwork preview exists': model })
continue
fn = os.path.join(folder, model + options.format)
images = []
labels = []
t0 = time.time()
keyword = options.hypernetwork.keyword
options.generate.prompt = options.prompt.replace('<keyword>', options.hypernetwork.keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
options.generate.prompt = f' <hypernet:{model}:{options.hypernetwork.strength}> ' + options.generate.prompt
log.info({ 'hypernetwork generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'hypernetwork': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'hypernetwork preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def embedding(params):
opt = await get('/sdapi/v1/options')
folder = opt['embeddings_dir']
if not os.path.exists(folder):
log.error({ 'embeddings directory not found': folder })
return
models = [os.path.splitext(f)[0] for f in Path(folder).glob('**/*.pt')]
log.info({ 'embeddings': len(models) })
for model in models:
if preview_exists(folder, model) and len(params.input) == 0: # if model preview exists and not manually included
log.info({ 'embedding preview exists': model })
continue
fn = os.path.join(folder, model + '.preview' + options.format)
images = []
labels = []
t0 = time.time()
keyword = '\"' + re.sub(r'\d', '', model) + '\"'
options.generate.batch_size = 4
options.generate.prompt = options.prompt.replace('<keyword>', keyword)
options.generate.prompt = options.generate.prompt.replace('<embedding>', '')
log.info({ 'embedding generating': model, 'keyword': keyword, 'prompt': options.generate.prompt })
data = await generate(options = options, quiet=True)
if 'image' in data:
for img in data['image']:
images.append(img)
labels.append(keyword)
else:
log.error({ 'embeding': model, 'keyword': keyword, 'error': data })
t1 = time.time()
if len(images) == 0:
log.error({ 'model': model, 'error': 'no images generated' })
continue
image = grid(images = images, labels = labels, border = 8)
log.info({ 'saving preview': fn, 'images': len(images), 'size': [image.width, image.height] })
image.save(fn)
t = t1 - t0
its = 1.0 * options.generate.steps * len(images) / t
log.info({ 'embeding preview created': model, 'image': fn, 'images': len(images), 'grid': [image.width, image.height], 'time': round(t, 2), 'its': round(its, 2) })
async def create_previews(params):
await preview_models(params)
await lora(params)
await lyco(params)
await hypernetwork(params)
await embedding(params)
await close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description = 'generate model previews')
parser.add_argument('--model', default='best/icbinp-icantbelieveIts-final.safetensors [73f48afbdc]', help="model used to create extra network previews")
parser.add_argument('--exclude', default=['sd-v20', 'sd-v21', 'inpainting', 'pix2pix'], help="exclude models with keywords")
parser.add_argument('--debug', default = False, action='store_true', help = 'print extra debug information')
parser.add_argument('input', type = str, nargs = '*')
args = parser.parse_args()
if args.debug:
log.setLevel(logging.DEBUG)
log.debug({ 'debug': True })
log.debug({ 'args': args.__dict__ })
asyncio.run(create_previews(args))