Spaces:
Running
Running
import streamlit as st | |
import nltk | |
from nltk.corpus import stopwords | |
from nltk.tokenize import word_tokenize | |
from nltk.stem import PorterStemmer | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import cosine_similarity | |
from PyPDF2 import PdfReader | |
import os | |
from io import BytesIO | |
import pickle | |
import pdfminer | |
from pdfminer.high_level import extract_text | |
import re | |
import PyPDF2 | |
import textract | |
import tempfile | |
from docx import Document | |
nltk.download('punkt') | |
nltk.download('stopwords') | |
def preprocess_text(text): | |
words = word_tokenize(text.lower()) | |
stop_words = set(stopwords.words('english')) | |
words = [word for word in words if word not in stop_words] | |
stemmer = PorterStemmer() | |
words = [stemmer.stem(word) for word in words] | |
return ' '.join(words) | |
def extract_text_from_pdf(pdf_content): | |
pdf_reader = PdfReader(BytesIO(pdf_content)) | |
text = '' | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def extract_text_from_docx(docx_content): | |
doc = Document(BytesIO(docx_content)) | |
text = " ".join(paragraph.text for paragraph in doc.paragraphs) | |
return text | |
def extract_text_from_txt(txt_content): | |
text = textract.process(input_filename=None, input_bytes=txt_content) | |
return text | |
def extract_text_from_resume(file_path): | |
file_extension = file_path.split('.')[-1].lower() | |
if file_extension == 'pdf': | |
return extract_text_from_pdf(file_path) | |
elif file_extension == 'docx': | |
return extract_text_from_docx(file_path) | |
elif file_extension == 'txt': | |
return extract_text_from_txt(file_path) | |
else: | |
raise ValueError(f"Unsupported file format: {file_extension}") | |
def clean_pdf_text(text): | |
text = re.sub('http\S+\s*', ' ', text) | |
text = re.sub('RT|cc', ' ', text) | |
text = re.sub('#\S+', '', text) | |
text = re.sub('@\S+', ' ', text) | |
text = re.sub('[%s]' % re.escape("""!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~"""), ' ', text) | |
text = re.sub(r'[^\x00-\x7f]',r' ', text) | |
text = re.sub('\s+', ' ', text) | |
return text | |
def extract_candidate_name(text): | |
pattern = r'(?:Mr\.|Ms\.|Mrs\.)?\s?([A-Z][a-z]+)\s([A-Z][a-z]+)' | |
match = re.search(pattern, text) | |
if match: | |
return match.group(0) | |
return "Candidate Name Not Found" | |
def calculate_similarity(job_description, cvs, cv_file_names): | |
processed_job_desc = preprocess_text(job_description) | |
processed_cvs = [preprocess_text(cv) for cv in cvs] | |
all_text = [processed_job_desc] + processed_cvs | |
vectorizer = TfidfVectorizer() | |
tfidf_matrix = vectorizer.fit_transform(all_text) | |
similarity_scores = cosine_similarity(tfidf_matrix)[0][1:] | |
ranked_cvs = list(zip(cv_file_names, similarity_scores)) | |
ranked_cvs.sort(key=lambda x: x[1], reverse=True) | |
return ranked_cvs | |
def rank_and_shortlist(job_description, cv_files, threshold=0.15): | |
cv_texts = [] | |
cv_file_names = [] | |
for cv_file in cv_files: | |
file_extension = os.path.splitext(cv_file.name)[1].lower() | |
try: | |
if file_extension == '.pdf': | |
cv_text = extract_text_from_pdf(cv_file.read()) | |
elif file_extension == '.docx': | |
cv_text = extract_text_from_docx(cv_file.read()) | |
elif file_extension == '.txt': | |
cv_text = cv_file.read().decode('utf-8', errors='ignore') | |
else: | |
st.warning(f"Unsupported file format: {file_extension}. Skipping file: {cv_file.name}") | |
continue | |
cv_texts.append(clean_pdf_text(cv_text)) | |
cv_file_names.append(cv_file.name) | |
except Exception as e: | |
st.warning(f"Error processing file '{cv_file.name}': {str(e)}") | |
continue | |
if not cv_texts: | |
st.error("No valid resumes found. Please upload resumes in supported formats (PDF, DOCX, or TXT).") | |
return [], [] | |
similarity_scores = calculate_similarity(job_description, cv_texts, cv_file_names) | |
ranked_cvs = [(cv_name, score) for (cv_name, score) in similarity_scores] | |
shortlisted_cvs = [(cv_name, score) for (cv_name, score) in ranked_cvs if score >= threshold] | |
return ranked_cvs, shortlisted_cvs | |
def main(): | |
st.title("Resume Ranking App") | |
st.write("Upload the Job Description:") | |
job_description = st.text_area("Job Description", height=200, key='job_description') | |
st.write("Upload the Resumes :") | |
cv_files = st.file_uploader("Choose files", accept_multiple_files=True, key='cv_files') | |
if st.button("Submit"): | |
if job_description and cv_files: | |
# Rank and shortlist candidates | |
ranked_cvs, shortlisted_cvs = rank_and_shortlist(job_description, cv_files) | |
# Display ranking with larger text | |
st.markdown("### Ranking of Resumes:") | |
for rank, score in ranked_cvs: | |
st.markdown(f"**File Name:** {rank}, **Similarity Score:** {score:.2f}") | |
# Display shortlisted candidates with larger text | |
st.markdown("### Shortlisted Candidates:") | |
if not shortlisted_cvs: # Check if the shortlisted_cvs list is empty | |
st.markdown("None") | |
else: | |
for rank, score in shortlisted_cvs: | |
st.markdown(f"**File Name:** {rank}, **Similarity Score:** {score:.2f}") | |
else: | |
st.write("Please upload both the job description and resumes to proceed.") | |
if __name__ == "__main__": | |
main() | |