File size: 9,506 Bytes
87110a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import streamlit as st
import numpy as np
import scipy.stats as stats
from fpdf import FPDF
import base64
import os
from plots import test_profile
import matplotlib.pyplot as plt
from PIL import Image

# Function to calculate z-score
def calculate_z_score(test_score, mean, std_dev):
    return (test_score - mean) / std_dev

def z_score_calculator(value, norm_mean, norm_sd):
    z_value = (value - norm_mean) / norm_sd
    stanine_value = round(1.25 * z_value + 5.5)
    z_score = round(z_value, 2)
    return z_score, stanine_value

def bnt_calculator(age, education, bnt):
        if age <= 60 and education <= 12:
            norm_mean = 54.5
            norm_sd = 3.2
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age <= 60 and education > 12:
            norm_mean = 54.0
            norm_sd = 4.4
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age > 60 and education <= 12:
            norm_mean = 54.8
            norm_sd = 3.3
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        elif age > 60 and education > 12:
            norm_mean = 56.2
            norm_sd = 3.4
            z_score, stanine_value = z_score_calculator(bnt, norm_mean, norm_sd)
            return norm_mean, norm_sd, z_score, stanine_value
        else:
            print("missing value/ wrong format")

def fas_calculator(age, education, fas):
    if age <= 60 and education <= 12:
        norm_mean = 42.7
        norm_sd = 13.7
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    elif age <= 60 and education > 12:
        norm_mean = 46.7
        norm_sd = 13.7
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    elif age > 60 and education <= 12:
        norm_mean = 46.9
        norm_sd = 10.4
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    elif age > 60 and education > 12:
        norm_mean = 51.6
        norm_sd = 12.6
        z_score, stanine_value = z_score_calculator(fas, norm_mean, norm_sd)
        return norm_mean, norm_sd, z_score, stanine_value
    else:
        print("missing value/ wrong format")

def generate_graph(BNT_stanine, FAS_stanine):
        # Create a plot
        fig, ax = plt.subplots()

        # Set axis labels and title
        ax.set_xlabel('Stanine values')
        ax.set_ylabel('Test')

        # Set the y-axis to display the tests
        ax.set_yticks([1, 2])
        ax.set_yticklabels(['BNT', 'FAS'])

        # Set the range of the x-axis
        ax.set_xlim([0, 10])

        # Add dots for BNT and FAS scores
        ax.scatter(BNT_stanine, 1, s=100, label='BNT')
        ax.scatter(FAS_stanine, 2, s=100, label='FAS')

        # Add legend
        ax.legend()

        # Show the plot
        # plt.show()

        # Save the graph as a png file
        fig.savefig('test_profile.png')
        return 'test_profile.png'



def create_pdf(z_score, mean, std_dev, logo_path, plot_path):
    pdf = FPDF()
    pdf.add_page()
    pdf.set_xy(0, 0)
    pdf.set_font("Arial", size=12)

    # Add logos
    x_positions = [25, 85, 145]
    for i, logo_path in enumerate(logo_paths):
        pdf.image(logo_path, x=x_positions[i], y=8, w=40)
    pdf.set_xy(10, 50)


    # Add title and center it
    title = "Z-Score Report"
    pdf.set_font("Arial", style="B", size=16)
    title_width = pdf.get_string_width(title) + 6
    pdf.cell((210 - title_width) / 2)
    pdf.cell(title_width, 10, title, 0, 1, "C")

    # Add z-score and center it
    pdf.set_font("Arial", size=12)
    z_score_text = "Your z-score is: {:.2f}".format(z_score)
    z_score_width = pdf.get_string_width(z_score_text) + 6
    pdf.cell((210 - z_score_width) / 2)
    pdf.cell(z_score_width, 10, z_score_text, 0, 1, "C")

    # Add mean and standard deviation and center it
    mean_std_text = "Mean: {}, Standard Deviation: {}".format(mean, std_dev)
    mean_std_width = pdf.get_string_width(mean_std_text) + 6
    pdf.cell((210 - mean_std_width) / 2)
    pdf.cell(mean_std_width, 10, mean_std_text, 0, 1, "C")

    # Add logo
    pdf.image(plot_path, x=10, y=80, w=200)
    # pdf.set_xy(10, 40)

    # Add tool description and center it
    pdf.set_xy(10, 230)
    pdf.set_font("Arial", size=10)
    description = "This PDF report was generated using the Z-Score Calculator Streamlit App."
    pdf.multi_cell(0, 10, description, 0, "C")

     # Add explanatory text about the collaboration between KI and KTH
    pdf.set_xy(10, 255)
    pdf.set_font("Arial", size=8)
    collaboration_text = (
        "Den här PDF:en är en del av ett samarbetsprojekt mellan Karolinska Institutet (KI) och "
        "Kungliga Tekniska Högskolan (KTH) med målsättningen att använda artificiell intelligens (AI) och "
        "teknik för att minska administration i sjukhusarbete. Projektet fokuserar på att utveckla och "
        "implementera AI-baserade lösningar för att förbättra arbetsflöden, öka effektiviteten och "
        "minska den administrativa bördan för sjukvårdspersonal. För frågor om formuläret kontakta Fredrik Sand fredrik.sand-aronsson@regionstockholm.se, för frågor om teknik kontakta Birger Moëll bmoell@kth.se."
    )
    line_width = 190
    line_height = pdf.font_size_pt * 0.6
    lines = collaboration_text.split(' ')
    current_line = ''
    for word in lines:
        if pdf.get_string_width(current_line + word) < line_width:
            current_line += word + ' '
        else:
            pdf.cell(line_width, line_height, current_line, 0, 1)
            current_line = word + ' '
    pdf.cell(line_width, line_height, current_line, 0, 1)

    return pdf

def pdf_to_base64(pdf):
    with open(pdf, "rb") as file:
        return base64.b64encode(file.read()).decode('utf-8')


# Title and description
st.title("Z-Score Calculator")
st.write("Enter your test score, age, and education level to calculate the z-score.")

# Input fields
#test_score = st.number_input("Test Score", min_value=0, value=0, step=1)
age = st.number_input("Age", min_value=0, value=18, step=1)
education_level = st.number_input("Education Level in years", min_value=0, value=18, step=1)
isw = st.number_input("ISW", min_value=0, value=0, step=1)
bnt = st.number_input("BNT", min_value=0, value=0, step=1)
fas = st.number_input("FAS", min_value=0, value=0, step=1)
animal = st.number_input("Animal", min_value=0, value=0, step=1)
verb = st.number_input("Verb", min_value=0, value=0, step=1)
repetition = st.number_input("Repetition", min_value=0, value=0, step=1)
logicogrammatic = st.number_input("Logicogrammatic", min_value=0, value=0, step=1)
inference = st.number_input("Inference", min_value=0, value=0, step=1)
reading_speed = st.number_input("Reading Speed", min_value=0, value=0, step=1)
decoding_words = st.number_input("Decoding Words", min_value=0, value=0, step=1)
decoding_non_words = st.number_input("Decoding Non-Words", min_value=0, value=0, step=1)
months_backward = st.number_input("Months Backward", min_value=0, value=0, step=1)
pataka = st.number_input("Pataka", min_value=0, value=0, step=1)


# add all the tests



# Calculate mean and standard deviation based on age and education level
# For simplicity, we will use made-up values for mean and std_dev
mean = np.random.randint(50, 100)
std_dev = np.random.randint(10, 30)

# Calculate z-score and display result
if st.button("Calculate Z-Score"):
    profile = test_profile(age, education_level, isw, bnt, fas)

    # for each value in the profile, calculate the z-score
    bnt_mean, bnt_std, z_bnt, stanine_bnt = bnt_calculator(age, education_level, bnt)
    fas_mean, fas_std, z_fas, stanine_fas = fas_calculator(age, education_level, fas)
    
    # z_score = calculate_z_score(test_score, mean, std_dev)
    st.write(f"Your bnt z-score is: {z_bnt:.2f}")
    st.write(f"Mean: {bnt_mean}, Standard Deviation: {bnt_std}")

    st.write(f"Your fas z-score is: {z_fas:.2f}")
    st.write(f"Mean: {fas_mean}, Standard Deviation: {fas_std}")
    # Create PDF
    # logo_path="logo.jpg"

    logo_paths = ["logo.jpg", "logo2.jpg", "logo3.jpg"]

    # create the plot from the dataframe

    # check if education level is more than 12 years, if more than 12, set value to one, otherwise zero
    education_level = 1 if education_level > 12 else 0

    plot_path = generate_graph(stanine_bnt, stanine_fas)

    # create an image from the plot and add to streamlit display
    image = Image.open(plot_path)
    st.image(image, caption='Stanine plot', use_column_width=True)

    pdf_filename = "z_score_report.pdf"
    pdf = create_pdf(z_bnt, bnt_mean, bnt_std, logo_paths, plot_path)
    pdf.output(name=pdf_filename)

    # Download PDF
    with open(pdf_filename, "rb") as file:
        base64_pdf = base64.b64encode(file.read()).decode('utf-8')
        pdf_display = f'<a href="data:application/octet-stream;base64,{base64_pdf}" download="{pdf_filename}">Download PDF</a>'
        st.markdown(pdf_display, unsafe_allow_html=True)

    # Remove PDF file after download
    if os.path.exists(pdf_filename):
        os.remove(pdf_filename)