RegionSpot / regionspot /test_time_augmentation.py
bklg's picture
Upload 114 files
a153c95
raw
history blame
10.2 kB
from itertools import count
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel
from detectron2.modeling import GeneralizedRCNNWithTTA, DatasetMapperTTA
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference_single_image
from detectron2.structures import Instances, Boxes
class RegionSpotWithTTA(GeneralizedRCNNWithTTA):
def __init__(self, cfg, model, tta_mapper=None, batch_size=3):
"""
Args:
cfg (CfgNode):
model ( RegionSpot): a RegionSpot to apply TTA on.
tta_mapper (callable): takes a dataset dict and returns a list of
augmented versions of the dataset dict. Defaults to
`DatasetMapperTTA(cfg)`.
batch_size (int): batch the augmented images into this batch size for inference.
"""
# fix the issue: cannot assign module before Module.__init__() call
nn.Module.__init__(self)
if isinstance(model, DistributedDataParallel):
model = model.module
self.cfg = cfg.clone()
self.model = model
if tta_mapper is None:
tta_mapper = DatasetMapperTTA(cfg)
self.tta_mapper = tta_mapper
self.batch_size = batch_size
# cvpods tta.
self.enable_cvpods_tta = cfg.TEST.AUG.CVPODS_TTA
self.enable_scale_filter = cfg.TEST.AUG.SCALE_FILTER
self.scale_ranges = cfg.TEST.AUG.SCALE_RANGES
self.max_detection = cfg.MODEL.RegionSpot.NUM_PROPOSALS
def _batch_inference(self, batched_inputs, detected_instances=None):
"""
Execute inference on a list of inputs,
using batch size = self.batch_size, instead of the length of the list.
"""
if detected_instances is None:
detected_instances = [None] * len(batched_inputs)
factors = 2 if self.tta_mapper.flip else 1
if self.enable_scale_filter:
assert len(batched_inputs) == len(self.scale_ranges) * factors
outputs = []
inputs, instances = [], []
for idx, input, instance in zip(count(), batched_inputs, detected_instances):
inputs.append(input)
instances.append(instance)
if self.enable_cvpods_tta:
output = self.model.forward(inputs, do_postprocess=False)[0]
if self.enable_scale_filter:
pred_boxes = output.get("pred_boxes")
keep = self.filter_boxes(pred_boxes.tensor, *self.scale_ranges[idx // factors])
output = Instances(
image_size=output.image_size,
pred_boxes=Boxes(pred_boxes.tensor[keep]),
pred_classes=output.pred_classes[keep],
scores=output.scores[keep])
outputs.extend([output])
else:
if len(inputs) == self.batch_size or idx == len(batched_inputs) - 1:
outputs.extend(
self.model.forward(
inputs,
do_postprocess=False,
)
)
inputs, instances = [], []
return outputs
@staticmethod
def filter_boxes(boxes, min_scale, max_scale):
"""
boxes: (N, 4) shape
"""
# assert boxes.mode == "xyxy"
w = boxes[:, 2] - boxes[:, 0]
h = boxes[:, 3] - boxes[:, 1]
keep = (w * h > min_scale * min_scale) & (w * h < max_scale * max_scale)
return keep
def _inference_one_image(self, input):
"""
Args:
input (dict): one dataset dict with "image" field being a CHW tensor
Returns:
dict: one output dict
"""
orig_shape = (input["height"], input["width"])
augmented_inputs, tfms = self._get_augmented_inputs(input)
# Detect boxes from all augmented versions
all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms)
# merge all detected boxes to obtain final predictions for boxes
if self.enable_cvpods_tta:
merged_instances = self._merge_detections_cvpods_tta(all_boxes, all_scores, all_classes, orig_shape)
else:
merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape)
return {"instances": merged_instances}
def _merge_detections(self, all_boxes, all_scores, all_classes, shape_hw):
# select from the union of all results
num_boxes = len(all_boxes)
num_classes = self.cfg.MODEL. RegionSpot.NUM_CLASSES
# +1 because fast_rcnn_inference expects background scores as well
all_scores_2d = torch.zeros(num_boxes, num_classes + 1, device=all_boxes.device)
for idx, cls, score in zip(count(), all_classes, all_scores):
all_scores_2d[idx, cls] = score
merged_instances, _ = fast_rcnn_inference_single_image(
all_boxes,
all_scores_2d,
shape_hw,
1e-8,
self.cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
self.cfg.TEST.DETECTIONS_PER_IMAGE,
)
return merged_instances
def _merge_detections_cvpods_tta(self, all_boxes, all_scores, all_classes, shape_hw):
all_scores = torch.tensor(all_scores).to(all_boxes.device)
all_classes = torch.tensor(all_classes).to(all_boxes.device)
all_boxes, all_scores, all_classes = self.merge_result_from_multi_scales(
all_boxes, all_scores, all_classes,
nms_type="soft_vote", vote_thresh=0.65,
max_detection=self.max_detection
)
all_boxes = Boxes(all_boxes)
all_boxes.clip(shape_hw)
result = Instances(shape_hw)
result.pred_boxes = all_boxes
result.scores = all_scores
result.pred_classes = all_classes.long()
return result
def merge_result_from_multi_scales(
self, boxes, scores, labels, nms_type="soft-vote", vote_thresh=0.65, max_detection=100
):
boxes, scores, labels = self.batched_vote_nms(
boxes, scores, labels, nms_type, vote_thresh
)
number_of_detections = boxes.shape[0]
# Limit to max_per_image detections **over all classes**
if number_of_detections > max_detection > 0:
boxes = boxes[:max_detection]
scores = scores[:max_detection]
labels = labels[:max_detection]
return boxes, scores, labels
def batched_vote_nms(self, boxes, scores, labels, vote_type, vote_thresh=0.65):
# apply per class level nms, add max_coordinates on boxes first, then remove it.
labels = labels.float()
max_coordinates = boxes.max() + 1
offsets = labels.reshape(-1, 1) * max_coordinates
boxes = boxes + offsets
boxes, scores, labels = self.bbox_vote(boxes, scores, labels, vote_thresh, vote_type)
boxes -= labels.reshape(-1, 1) * max_coordinates
return boxes, scores, labels
def bbox_vote(self, boxes, scores, labels, vote_thresh, vote_type="softvote"):
assert boxes.shape[0] == scores.shape[0] == labels.shape[0]
det = torch.cat((boxes, scores.reshape(-1, 1), labels.reshape(-1, 1)), dim=1)
vote_results = torch.zeros(0, 6, device=det.device)
if det.numel() == 0:
return vote_results[:, :4], vote_results[:, 4], vote_results[:, 5]
order = scores.argsort(descending=True)
det = det[order]
while det.shape[0] > 0:
# IOU
area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
xx1 = torch.max(det[0, 0], det[:, 0])
yy1 = torch.max(det[0, 1], det[:, 1])
xx2 = torch.min(det[0, 2], det[:, 2])
yy2 = torch.min(det[0, 3], det[:, 3])
w = torch.clamp(xx2 - xx1, min=0.)
h = torch.clamp(yy2 - yy1, min=0.)
inter = w * h
iou = inter / (area[0] + area[:] - inter)
# get needed merge det and delete these det
merge_index = torch.where(iou >= vote_thresh)[0]
vote_det = det[merge_index, :]
det = det[iou < vote_thresh]
if merge_index.shape[0] <= 1:
vote_results = torch.cat((vote_results, vote_det), dim=0)
else:
if vote_type == "soft_vote":
vote_det_iou = iou[merge_index]
det_accu_sum = self.get_soft_dets_sum(vote_det, vote_det_iou)
elif vote_type == "vote":
det_accu_sum = self.get_dets_sum(vote_det)
vote_results = torch.cat((vote_results, det_accu_sum), dim=0)
order = vote_results[:, 4].argsort(descending=True)
vote_results = vote_results[order, :]
return vote_results[:, :4], vote_results[:, 4], vote_results[:, 5]
@staticmethod
def get_dets_sum(vote_det):
vote_det[:, :4] *= vote_det[:, 4:5].repeat(1, 4)
max_score = vote_det[:, 4].max()
det_accu_sum = torch.zeros((1, 6), device=vote_det.device)
det_accu_sum[:, :4] = torch.sum(vote_det[:, :4], dim=0) / torch.sum(vote_det[:, 4])
det_accu_sum[:, 4] = max_score
det_accu_sum[:, 5] = vote_det[0, 5]
return det_accu_sum
@staticmethod
def get_soft_dets_sum(vote_det, vote_det_iou):
soft_vote_det = vote_det.detach().clone()
soft_vote_det[:, 4] *= (1 - vote_det_iou)
INFERENCE_TH = 0.05
soft_index = torch.where(soft_vote_det[:, 4] >= INFERENCE_TH)[0]
soft_vote_det = soft_vote_det[soft_index, :]
vote_det[:, :4] *= vote_det[:, 4:5].repeat(1, 4)
max_score = vote_det[:, 4].max()
det_accu_sum = torch.zeros((1, 6), device=vote_det.device)
det_accu_sum[:, :4] = torch.sum(vote_det[:, :4], dim=0) / torch.sum(vote_det[:, 4])
det_accu_sum[:, 4] = max_score
det_accu_sum[:, 5] = vote_det[0, 5]
if soft_vote_det.shape[0] > 0:
det_accu_sum = torch.cat((det_accu_sum, soft_vote_det), dim=0)
return det_accu_sum