Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#235
by
onnew
- opened
app.py
CHANGED
@@ -1,58 +1,66 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
import spaces
|
5 |
import torch
|
6 |
-
from diffusers import
|
7 |
-
from transformers import CLIPTextModel, CLIPTokenizer
|
8 |
-
from live_preview_helpers import
|
9 |
|
10 |
-
|
|
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
14 |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
15 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
|
|
|
|
16 |
torch.cuda.empty_cache()
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
MAX_IMAGE_SIZE = 2048
|
20 |
|
21 |
-
|
22 |
-
|
23 |
@spaces.GPU(duration=75)
|
24 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
25 |
if randomize_seed:
|
26 |
seed = random.randint(0, MAX_SEED)
|
27 |
-
generator = torch.Generator().manual_seed(seed)
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
39 |
yield img, seed
|
40 |
|
|
|
|
|
|
|
41 |
examples = [
|
42 |
"a tiny astronaut hatching from an egg on the moon",
|
43 |
"a cat holding a sign that says hello world",
|
44 |
"an anime illustration of a wiener schnitzel",
|
45 |
]
|
46 |
|
47 |
-
css="""
|
48 |
#col-container {
|
49 |
margin: 0 auto;
|
50 |
max-width: 520px;
|
51 |
}
|
52 |
"""
|
53 |
|
|
|
54 |
with gr.Blocks(css=css) as demo:
|
55 |
-
|
56 |
with gr.Column(elem_id="col-container"):
|
57 |
gr.Markdown(f"""# FLUX.1 [dev]
|
58 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
@@ -60,7 +68,6 @@ with gr.Blocks(css=css) as demo:
|
|
60 |
""")
|
61 |
|
62 |
with gr.Row():
|
63 |
-
|
64 |
prompt = gr.Text(
|
65 |
label="Prompt",
|
66 |
show_label=False,
|
@@ -68,13 +75,11 @@ with gr.Blocks(css=css) as demo:
|
|
68 |
placeholder="Enter your prompt",
|
69 |
container=False,
|
70 |
)
|
71 |
-
|
72 |
run_button = gr.Button("Run", scale=0)
|
73 |
|
74 |
result = gr.Image(label="Result", show_label=False)
|
75 |
|
76 |
with gr.Accordion("Advanced Settings", open=False):
|
77 |
-
|
78 |
seed = gr.Slider(
|
79 |
label="Seed",
|
80 |
minimum=0,
|
@@ -86,7 +91,6 @@ with gr.Blocks(css=css) as demo:
|
|
86 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
87 |
|
88 |
with gr.Row():
|
89 |
-
|
90 |
width = gr.Slider(
|
91 |
label="Width",
|
92 |
minimum=256,
|
@@ -104,7 +108,6 @@ with gr.Blocks(css=css) as demo:
|
|
104 |
)
|
105 |
|
106 |
with gr.Row():
|
107 |
-
|
108 |
guidance_scale = gr.Slider(
|
109 |
label="Guidance Scale",
|
110 |
minimum=1,
|
@@ -122,18 +125,18 @@ with gr.Blocks(css=css) as demo:
|
|
122 |
)
|
123 |
|
124 |
gr.Examples(
|
125 |
-
examples
|
126 |
-
fn
|
127 |
-
inputs
|
128 |
-
outputs
|
129 |
cache_examples="lazy"
|
130 |
)
|
131 |
|
132 |
gr.on(
|
133 |
triggers=[run_button.click, prompt.submit],
|
134 |
-
fn
|
135 |
-
inputs
|
136 |
-
outputs
|
137 |
)
|
138 |
|
139 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
|
|
4 |
import torch
|
5 |
+
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL
|
6 |
+
from transformers import CLIPTextModel, CLIPTokenizer
|
7 |
+
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
|
8 |
|
9 |
+
# Definindo variáveis e carregando modelos
|
10 |
+
dtype = torch.float16 # Usando float16 para melhorar a performance
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
|
13 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=dtype).to(device)
|
14 |
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=dtype).to(device)
|
15 |
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=dtype, vae=taef1).to(device)
|
16 |
+
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
|
17 |
+
|
18 |
torch.cuda.empty_cache()
|
19 |
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
MAX_IMAGE_SIZE = 2048
|
22 |
|
23 |
+
# Função de inferência otimizada
|
24 |
+
@torch.inference_mode() # Desabilitando cálculo de gradientes para acelerar a inferência
|
25 |
@spaces.GPU(duration=75)
|
26 |
def infer(prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, num_inference_steps=28, progress=gr.Progress(track_tqdm=True)):
|
27 |
if randomize_seed:
|
28 |
seed = random.randint(0, MAX_SEED)
|
|
|
29 |
|
30 |
+
generator = torch.Generator(device).manual_seed(seed)
|
31 |
+
|
32 |
+
# Usando autograd em precisão reduzida (float16) para acelerar a inferência
|
33 |
+
with torch.autocast("cuda", dtype=torch.float16):
|
34 |
+
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
35 |
+
prompt=prompt,
|
36 |
+
guidance_scale=guidance_scale,
|
37 |
+
num_inference_steps=num_inference_steps,
|
38 |
+
width=width,
|
39 |
+
height=height,
|
40 |
+
generator=generator,
|
41 |
+
output_type="pil",
|
42 |
+
good_vae=good_vae,
|
43 |
+
):
|
44 |
yield img, seed
|
45 |
|
46 |
+
torch.cuda.empty_cache() # Limpar a memória após a inferência para liberar recursos
|
47 |
+
|
48 |
+
# Exemplos
|
49 |
examples = [
|
50 |
"a tiny astronaut hatching from an egg on the moon",
|
51 |
"a cat holding a sign that says hello world",
|
52 |
"an anime illustration of a wiener schnitzel",
|
53 |
]
|
54 |
|
55 |
+
css = """
|
56 |
#col-container {
|
57 |
margin: 0 auto;
|
58 |
max-width: 520px;
|
59 |
}
|
60 |
"""
|
61 |
|
62 |
+
# Interface Gradio
|
63 |
with gr.Blocks(css=css) as demo:
|
|
|
64 |
with gr.Column(elem_id="col-container"):
|
65 |
gr.Markdown(f"""# FLUX.1 [dev]
|
66 |
12B param rectified flow transformer guidance-distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/)
|
|
|
68 |
""")
|
69 |
|
70 |
with gr.Row():
|
|
|
71 |
prompt = gr.Text(
|
72 |
label="Prompt",
|
73 |
show_label=False,
|
|
|
75 |
placeholder="Enter your prompt",
|
76 |
container=False,
|
77 |
)
|
|
|
78 |
run_button = gr.Button("Run", scale=0)
|
79 |
|
80 |
result = gr.Image(label="Result", show_label=False)
|
81 |
|
82 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
83 |
seed = gr.Slider(
|
84 |
label="Seed",
|
85 |
minimum=0,
|
|
|
91 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
92 |
|
93 |
with gr.Row():
|
|
|
94 |
width = gr.Slider(
|
95 |
label="Width",
|
96 |
minimum=256,
|
|
|
108 |
)
|
109 |
|
110 |
with gr.Row():
|
|
|
111 |
guidance_scale = gr.Slider(
|
112 |
label="Guidance Scale",
|
113 |
minimum=1,
|
|
|
125 |
)
|
126 |
|
127 |
gr.Examples(
|
128 |
+
examples=examples,
|
129 |
+
fn=infer,
|
130 |
+
inputs=[prompt],
|
131 |
+
outputs=[result, seed],
|
132 |
cache_examples="lazy"
|
133 |
)
|
134 |
|
135 |
gr.on(
|
136 |
triggers=[run_button.click, prompt.submit],
|
137 |
+
fn=infer,
|
138 |
+
inputs=[prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
139 |
+
outputs=[result, seed]
|
140 |
)
|
141 |
|
142 |
+
demo.launch()
|