Spaces:
Sleeping
Sleeping
File size: 12,909 Bytes
839f7b3 2eface4 839f7b3 8ac5039 839f7b3 2eface4 5140605 2eface4 839f7b3 5140605 839f7b3 5140605 839f7b3 2eface4 839f7b3 2eface4 5140605 cc46c30 839f7b3 2eface4 839f7b3 2eface4 839f7b3 2eface4 839f7b3 2eface4 839f7b3 2eface4 0585497 839f7b3 3175c21 839f7b3 3175c21 839f7b3 3175c21 839f7b3 3175c21 839f7b3 ecd55e0 839f7b3 0585497 839f7b3 ecd55e0 839f7b3 2eface4 839f7b3 2eface4 839f7b3 3175c21 839f7b3 3175c21 839f7b3 2eface4 839f7b3 2eface4 839f7b3 2eface4 839f7b3 5140605 839f7b3 ecd55e0 839f7b3 ecd55e0 839f7b3 5140605 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 |
#! /usr/bin/env python
# coding=utf-8
# Copyright 2022 Bofeng Huang
import datetime
import logging
import os
import re
import warnings
import gradio as gr
import pandas as pd
import psutil
import pytube as pt
import torch
# import whisper
from faster_whisper import WhisperModel
from huggingface_hub import hf_hub_download, snapshot_download
from transformers.utils.logging import disable_progress_bar
import nltk
nltk.download("punkt")
from nltk.tokenize import sent_tokenize
warnings.filterwarnings("ignore")
disable_progress_bar()
# DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v3-french"
# CHECKPOINT_FILENAME = "checkpoint_openai.pt"
GEN_KWARGS = {
"task": "transcribe",
"language": "fr",
# "without_timestamps": True,
# decode options
# "beam_size": 1,
# "patience": 2,
# disable fallback
# "compression_ratio_threshold": None,
# "logprob_threshold": None,
# vad threshold
# "no_speech_threshold": None,
# "condition_on_previous_text": False, # todo: only for distilled version
"vad_filter": True,
}
logging.basicConfig(
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
datefmt="%Y-%m-%dT%H:%M:%SZ",
)
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# device = 0 if torch.cuda.is_available() else "cpu"
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Model will be loaded on device `{device}`")
cached_models = {}
def format_timestamp(seconds):
return str(datetime.timedelta(seconds=round(seconds)))
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' " </center>"
)
return HTML_str
def download_audio_from_youtube(yt_url, downloaded_filename="audio.wav"):
yt = pt.YouTube(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename="audio.mp3")
stream.download(filename=downloaded_filename)
return downloaded_filename
def download_video_from_youtube(yt_url, downloaded_filename="video.mp4"):
yt = pt.YouTube(yt_url)
stream = yt.streams.filter(progressive=True, file_extension="mp4").order_by("resolution").desc().first()
stream.download(filename=downloaded_filename)
logger.info(f"Download YouTube video from {yt_url}")
return downloaded_filename
def _print_memory_info():
memory = psutil.virtual_memory()
logger.info(
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
)
def _print_cuda_memory_info():
used_mem, tot_mem = torch.cuda.mem_get_info()
logger.info(
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
)
def print_memory_info():
_print_memory_info()
_print_cuda_memory_info()
def maybe_load_cached_pipeline(model_name):
model = cached_models.get(model_name)
if model is None:
# downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
# downloaded_model_path = snapshot_download(repo_id=model_name)
downloaded_model_path = snapshot_download(repo_id=model_name, allow_patterns="ctranslate2/*")
downloaded_model_path = f"{downloaded_model_path}/ctranslate2"
# model = whisper.load_model(downloaded_model_path, device=device)
model = WhisperModel(downloaded_model_path, device=device, compute_type="float16")
logger.info(f"`{model_name}` has been loaded on device `{device}`")
print_memory_info()
cached_models[model_name] = model
return model
def infer(model, filename, with_timestamps, return_df=False):
if with_timestamps:
# model_outputs = model.transcribe(filename, **GEN_KWARGS)
model_outputs, _ = model.transcribe(filename, **GEN_KWARGS)
model_outputs = [segment._asdict() for segment in model_outputs]
if return_df:
# model_outputs_df = pd.DataFrame(model_outputs["segments"])
model_outputs_df = pd.DataFrame(model_outputs)
# print(model_outputs)
# print(model_outputs_df)
# print(model_outputs_df.info(verbose=True))
model_outputs_df = model_outputs_df[["start", "end", "text"]]
model_outputs_df["start"] = model_outputs_df["start"].map(format_timestamp)
model_outputs_df["end"] = model_outputs_df["end"].map(format_timestamp)
model_outputs_df["text"] = model_outputs_df["text"].str.strip()
return model_outputs_df
else:
return "\n\n".join(
[
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
# for segment in model_outputs["segments"]
for segment in model_outputs
]
)
else:
# text = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
model_outputs, _ = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)
text = " ".join([segment.text for segment in model_outputs])
if return_df:
return pd.DataFrame({"text": sent_tokenize(text)})
else:
return text
# def transcribe(microphone, file_upload, with_timestamps, model_name=DEFAULT_MODEL_NAME):
def transcribe(audio_file_path, with_timestamps, model_name=DEFAULT_MODEL_NAME):
# warn_output = ""
# if (microphone is not None) and (file_upload is not None):
# warn_output = (
# "WARNING: You've uploaded an audio file and used the microphone. "
# "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
# )
# elif (microphone is None) and (file_upload is None):
# return "ERROR: You have to either use the microphone or upload an audio file"
# audio_file_path = microphone if microphone is not None else file_upload
model = maybe_load_cached_pipeline(model_name)
# text = model.transcribe(audio_file_path, **GEN_KWARGS)["text"]
# text = infer(model, audio_file_path, with_timestamps)
text = infer(model, audio_file_path, with_timestamps, return_df=True)
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
# return warn_output + text
return text
def yt_transcribe(yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
# html_embed_str = _return_yt_html_embed(yt_url)
audio_file_path = download_audio_from_youtube(yt_url)
model = maybe_load_cached_pipeline(model_name)
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
# text = infer(model, audio_file_path, with_timestamps)
text = infer(model, audio_file_path, with_timestamps, return_df=True)
logger.info(f'Transcription by `{model_name}` of "{yt_url}":\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
# return html_embed_str, text
return text
def video_transcribe(video_file_path, with_timestamps, model_name=DEFAULT_MODEL_NAME):
if video_file_path is None:
raise ValueError("Failed to transcribe video as no video_file_path has been defined")
audio_file_path = re.sub(r"\.mp4$", ".wav", video_file_path)
os.system(f'ffmpeg -hide_banner -loglevel error -y -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file_path}"')
model = maybe_load_cached_pipeline(model_name)
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
text = infer(model, audio_file_path, with_timestamps, return_df=True)
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
return text
# load default model
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
# default_text_output_df = pd.DataFrame(columns=["start", "end", "text"])
default_text_output_df = pd.DataFrame(columns=["text"])
with gr.Blocks() as demo:
with gr.Tab("Transcribe Audio"):
gr.Markdown(
f"""
<div>
<h1 style='text-align: center'>Whisper French Demo: Transcribe Audio</h1>
</div>
Transcribe long-form microphone or audio inputs!
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
Efficient inference is supported by [faster-whisper](https://github.com/guillaumekln/faster-whisper) and [CTranslate2](https://github.com/OpenNMT/CTranslate2).
"""
)
# microphone_input = gr.Audio(sources="microphone", type="filepath", label="Record")
# upload_input = gr.Audio(sources="upload", type="filepath", label="Upload File")
audio_file_path = gr.Audio(sources=["microphone", "upload"], type="filepath", label="Record or upload file")
with_timestamps_input = gr.Checkbox(label="With timestamps?")
microphone_transcribe_btn = gr.Button("Transcribe Audio")
# gr.Markdown('''
# Here you will get generated transcrit.
# ''')
# microphone_text_output = gr.outputs.Textbox(label="Transcription")
text_output_df2 = gr.DataFrame(
value=default_text_output_df,
label="Transcription",
wrap=True,
)
microphone_transcribe_btn.click(
transcribe, inputs=[audio_file_path, with_timestamps_input], outputs=text_output_df2
)
# with gr.Tab("Transcribe YouTube"):
# gr.Markdown(
# f"""
# <div>
# <h1 style='text-align: center'>Whisper French Demo: Transcribe YouTube</h1>
# </div>
# Transcribe long-form YouTube videos!
# Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
# """
# )
# yt_link_input2 = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
# with_timestamps_input2 = gr.Checkbox(label="With timestamps?", value=True)
# yt_transcribe_btn = gr.Button("Transcribe YouTube")
# # yt_text_output = gr.outputs.Textbox(label="Transcription")
# text_output_df3 = gr.DataFrame(
# value=default_text_output_df,
# label="Transcription",
# row_count=(0, "dynamic"),
# max_rows=10,
# wrap=True,
# overflow_row_behaviour="paginate",
# )
# # yt_html_output = gr.outputs.HTML(label="YouTube Page")
# yt_transcribe_btn.click(yt_transcribe, inputs=[yt_link_input2, with_timestamps_input2], outputs=[text_output_df3])
with gr.Tab("Transcribe Video"):
gr.Markdown(
f"""
<div>
<h1 style='text-align: center'>Whisper French Demo: Transcribe Video</h1>
</div>
Transcribe long-form YouTube videos or uploaded video inputs!
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
Efficient inference is supported by [faster-whisper](https://github.com/guillaumekln/faster-whisper) and [CTranslate2](https://github.com/OpenNMT/CTranslate2).
"""
)
yt_link_input = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
download_youtube_btn = gr.Button("Download Youtube video")
downloaded_video_output = gr.Video(label="Video file", mirror_webcam=False)
download_youtube_btn.click(download_video_from_youtube, inputs=[yt_link_input], outputs=[downloaded_video_output])
with_timestamps_input3 = gr.Checkbox(label="With timestamps?", value=True)
video_transcribe_btn = gr.Button("Transcribe video")
text_output_df = gr.DataFrame(
value=default_text_output_df,
label="Transcription",
wrap=True,
)
video_transcribe_btn.click(video_transcribe, inputs=[downloaded_video_output, with_timestamps_input3], outputs=[text_output_df])
# demo.queue(max_size=10).launch(server_name="0.0.0.0", debug=True, ssl_certfile="/home/bhuang/tools/cert.pem", ssl_keyfile="/home/bhuang/tools/key.pem", ssl_verify=False)
demo.queue(max_size=10).launch()
|