Spaces:
Running
Running
"""Helpers for visualization""" | |
import os | |
import numpy as np | |
import matplotlib | |
import matplotlib.pyplot as plt | |
import cv2 | |
import PIL | |
from PIL import Image, ImageOps, ImageDraw | |
from os.path import exists | |
import librosa.display | |
import pandas as pd | |
import itertools | |
import librosa | |
from tqdm import tqdm | |
from IPython.display import Audio, Markdown, display | |
from ipywidgets import Button, HBox, VBox, Text, Label, HTML, widgets | |
from shared.utils.log import tqdm_iterator | |
import warnings | |
warnings.filterwarnings("ignore") | |
try: | |
import torchvideotransforms | |
except: | |
print("Failed to import torchvideotransforms. Proceeding without.") | |
print("Please install using:") | |
print("pip install git+https://github.com/hassony2/torch_videovision") | |
# define predominanat colors | |
COLORS = { | |
"pink": (242, 116, 223), | |
"cyan": (46, 242, 203), | |
"red": (255, 0, 0), | |
"green": (0, 255, 0), | |
"blue": (0, 0, 255), | |
"yellow": (255, 255, 0), | |
} | |
def get_predominant_color(color_key, mode="RGB", alpha=0): | |
assert color_key in COLORS.keys(), f"Unknown color key: {color_key}" | |
if mode == "RGB": | |
return COLORS[color_key] | |
elif mode == "RGBA": | |
return COLORS[color_key] + (alpha,) | |
def show_single_image(image: np.ndarray, figsize: tuple = (8, 8), title: str = None, cmap: str = None, ticks=False): | |
"""Show a single image.""" | |
fig, ax = plt.subplots(1, 1, figsize=figsize) | |
if isinstance(image, Image.Image): | |
image = np.asarray(image) | |
ax.set_title(title) | |
ax.imshow(image, cmap=cmap) | |
if not ticks: | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
plt.show() | |
def show_grid_of_images( | |
images: np.ndarray, n_cols: int = 4, figsize: tuple = (8, 8), subtitlesize=14, | |
cmap=None, subtitles=None, title=None, save=False, savepath="sample.png", titlesize=20, | |
ysuptitle=0.8, xlabels=None, sizealpha=0.7, show=True, row_labels=None, aspect=None, | |
): | |
"""Show a grid of images.""" | |
n_cols = min(n_cols, len(images)) | |
copy_of_images = images.copy() | |
for i, image in enumerate(copy_of_images): | |
if isinstance(image, Image.Image): | |
image = np.asarray(image) | |
copy_of_images[i] = image | |
if subtitles is None: | |
subtitles = [None] * len(images) | |
if xlabels is None: | |
xlabels = [None] * len(images) | |
if row_labels is None: | |
num_rows = int(np.ceil(len(images) / n_cols)) | |
row_labels = [None] * num_rows | |
n_rows = int(np.ceil(len(images) / n_cols)) | |
fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize) | |
if len(images) == 1: | |
axes = np.array([[axes]]) | |
for i, ax in enumerate(axes.flat): | |
if i < len(copy_of_images): | |
if len(copy_of_images[i].shape) == 2 and cmap is None: | |
cmap="gray" | |
ax.imshow(copy_of_images[i], cmap=cmap, aspect=aspect) | |
ax.set_title(subtitles[i], fontsize=subtitlesize) | |
ax.set_xlabel(xlabels[i], fontsize=sizealpha * subtitlesize) | |
ax.set_xticks([]) | |
ax.set_yticks([]) | |
col_idx = i % n_cols | |
if col_idx == 0: | |
ax.set_ylabel(row_labels[i // n_cols], fontsize=sizealpha * subtitlesize) | |
fig.tight_layout() | |
plt.suptitle(title, y=ysuptitle, fontsize=titlesize) | |
if save: | |
plt.savefig(savepath, bbox_inches='tight') | |
if show: | |
plt.show() | |
def add_text_to_image(image, text): | |
from PIL import ImageFont | |
from PIL import ImageDraw | |
# # resize image | |
# image = image.resize((image.size[0] * 2, image.size[1] * 2)) | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
# font = ImageFont.load("arial.pil") | |
# font = ImageFont.FreeTypeFont(size=20) | |
# font = ImageFont.truetype("arial.ttf", 28, encoding="unic") | |
# change fontsize | |
# select color = black if image is mostly white | |
if np.mean(image) > 200: | |
draw.text((0, 0), text, (0,0,0), font=font) | |
else: | |
draw.text((0, 0), text, (255,255,255), font=font) | |
# draw.text((0, 0), text, (255,255,255), font=font) | |
return image | |
def show_keypoint_matches( | |
img1, kp1, img2, kp2, matches, | |
K=10, figsize=(10, 5), drawMatches_args=dict(matchesThickness=3, singlePointColor=(0, 0, 0)), | |
choose_matches="random", | |
): | |
"""Displays matches found in the pair of images""" | |
if choose_matches == "random": | |
selected_matches = np.random.choice(matches, K) | |
elif choose_matches == "all": | |
K = len(matches) | |
selected_matches = matches | |
elif choose_matches == "topk": | |
selected_matches = matches[:K] | |
else: | |
raise ValueError(f"Unknown value for choose_matches: {choose_matches}") | |
# color each match with a different color | |
cmap = matplotlib.cm.get_cmap('gist_rainbow', K) | |
colors = [[int(x*255) for x in cmap(i)[:3]] for i in np.arange(0,K)] | |
drawMatches_args.update({"matchColor": -1, "singlePointColor": (100, 100, 100)}) | |
img3 = cv2.drawMatches(img1, kp1, img2, kp2, selected_matches, outImg=None, **drawMatches_args) | |
show_single_image( | |
img3, | |
figsize=figsize, | |
title=f"[{choose_matches.upper()}] Selected K = {K} matches between the pair of images.", | |
) | |
return img3 | |
def draw_kps_on_image(image: np.ndarray, kps: np.ndarray, color=COLORS["red"], radius=3, thickness=-1, return_as="PIL"): | |
""" | |
Draw keypoints on image. | |
Args: | |
image: Image to draw keypoints on. | |
kps: Keypoints to draw. Note these should be in (x, y) format. | |
""" | |
if isinstance(image, Image.Image): | |
image = np.asarray(image) | |
if isinstance(color, str): | |
color = PIL.ImageColor.getrgb(color) | |
colors = [color] * len(kps) | |
elif isinstance(color, tuple): | |
colors = [color] * len(kps) | |
elif isinstance(color, list): | |
colors = [PIL.ImageColor.getrgb(c) for c in color] | |
assert len(colors) == len(kps), f"Number of colors ({len(colors)}) must be equal to number of keypoints ({len(kps)})" | |
for kp, c in zip(kps, colors): | |
image = cv2.circle( | |
image.copy(), (int(kp[0]), int(kp[1])), radius=radius, color=c, thickness=thickness) | |
if return_as == "PIL": | |
return Image.fromarray(image) | |
return image | |
def get_concat_h(im1, im2): | |
"""Concatenate two images horizontally""" | |
dst = Image.new('RGB', (im1.width + im2.width, im1.height)) | |
dst.paste(im1, (0, 0)) | |
dst.paste(im2, (im1.width, 0)) | |
return dst | |
def get_concat_v(im1, im2): | |
"""Concatenate two images vertically""" | |
dst = Image.new('RGB', (im1.width, im1.height + im2.height)) | |
dst.paste(im1, (0, 0)) | |
dst.paste(im2, (0, im1.height)) | |
return dst | |
def show_images_with_keypoints(images: list, kps: list, radius=15, color=(0, 220, 220), figsize=(10, 8)): | |
assert len(images) == len(kps) | |
# generate | |
images_with_kps = [] | |
for i in range(len(images)): | |
img_with_kps = draw_kps_on_image(images[i], kps[i], radius=radius, color=color, return_as="PIL") | |
images_with_kps.append(img_with_kps) | |
# show | |
show_grid_of_images(images_with_kps, n_cols=len(images), figsize=figsize) | |
def set_latex_fonts(usetex=True, fontsize=14, show_sample=False, **kwargs): | |
try: | |
plt.rcParams.update({ | |
"text.usetex": usetex, | |
"font.family": "serif", | |
# "font.serif": ["Computer Modern Romans"], | |
"font.size": fontsize, | |
**kwargs, | |
}) | |
if show_sample: | |
plt.figure() | |
plt.title("Sample $y = x^2$") | |
plt.plot(np.arange(0, 10), np.arange(0, 10)**2, "--o") | |
plt.grid() | |
plt.show() | |
except: | |
print("Failed to setup LaTeX fonts. Proceeding without.") | |
pass | |
def plot_2d_points( | |
list_of_points_2d, | |
colors=None, | |
sizes=None, | |
markers=None, | |
alpha=0.75, | |
h=256, | |
w=256, | |
ax=None, | |
save=True, | |
savepath="test.png", | |
): | |
if ax is None: | |
fig, ax = plt.subplots(1, 1) | |
ax.set_xlim([0, w]) | |
ax.set_ylim([0, h]) | |
if sizes is None: | |
sizes = [0.1 for _ in range(len(list_of_points_2d))] | |
if colors is None: | |
colors = ["gray" for _ in range(len(list_of_points_2d))] | |
if markers is None: | |
markers = ["o" for _ in range(len(list_of_points_2d))] | |
for points_2d, color, s, m in zip(list_of_points_2d, colors, sizes, markers): | |
ax.scatter(points_2d[:, 0], points_2d[:, 1], s=s, alpha=alpha, color=color, marker=m) | |
if save: | |
plt.savefig(savepath, bbox_inches='tight') | |
def plot_2d_points_on_image( | |
image, | |
img_alpha=1.0, | |
ax=None, | |
list_of_points_2d=[], | |
scatter_args=dict(), | |
): | |
if ax is None: | |
fig, ax = plt.subplots(1, 1) | |
ax.imshow(image, alpha=img_alpha) | |
scatter_args["save"] = False | |
plot_2d_points(list_of_points_2d, ax=ax, **scatter_args) | |
# invert the axis | |
ax.set_ylim(ax.get_ylim()[::-1]) | |
def compare_landmarks( | |
image, ground_truth_landmarks, v2d, predicted_landmarks, | |
save=False, savepath="compare_landmarks.png", num_kps_to_show=-1, | |
show_matches=True, | |
): | |
# show GT landmarks on image | |
fig, axes = plt.subplots(1, 3, figsize=(11, 4)) | |
ax = axes[0] | |
plot_2d_points_on_image( | |
image, | |
list_of_points_2d=[ground_truth_landmarks], | |
scatter_args=dict(sizes=[15], colors=["limegreen"]), | |
ax=ax, | |
) | |
ax.set_title("GT landmarks", fontsize=12) | |
# since the projected points are inverted, using 180 degree rotation about z-axis | |
ax = axes[1] | |
plot_2d_points_on_image( | |
image, | |
list_of_points_2d=[v2d, predicted_landmarks], | |
scatter_args=dict(sizes=[0.08, 15], markers=["o", "x"], colors=["royalblue", "red"]), | |
ax=ax, | |
) | |
ax.set_title("Projection of predicted mesh", fontsize=12) | |
# plot the ground truth and predicted landmarks on the same image | |
ax = axes[2] | |
plot_2d_points_on_image( | |
image, | |
list_of_points_2d=[ | |
ground_truth_landmarks[:num_kps_to_show], | |
predicted_landmarks[:num_kps_to_show], | |
], | |
scatter_args=dict(sizes=[15, 15], markers=["o", "x"], colors=["limegreen", "red"]), | |
ax=ax, | |
img_alpha=0.5, | |
) | |
ax.set_title("GT and predicted landmarks", fontsize=12) | |
if show_matches: | |
for i in range(num_kps_to_show): | |
x_values = [ground_truth_landmarks[i, 0], predicted_landmarks[i, 0]] | |
y_values = [ground_truth_landmarks[i, 1], predicted_landmarks[i, 1]] | |
ax.plot(x_values, y_values, color="yellow", markersize=1, linewidth=2.) | |
fig.tight_layout() | |
if save: | |
plt.savefig(savepath, bbox_inches="tight") | |
def plot_historgam_values( | |
X, display_vals=False, | |
bins=50, figsize=(8, 5), | |
show_mean=True, | |
xlabel=None, ylabel=None, | |
ax=None, title=None, show=False, | |
**kwargs, | |
): | |
if ax is None: | |
fig, ax = plt.subplots(1, 1, figsize=figsize) | |
ax.hist(X, bins=bins, **kwargs) | |
if title is None: | |
title = "Histogram of values" | |
ax.set_xlabel(xlabel) | |
ax.set_ylabel(ylabel) | |
if display_vals: | |
x, counts = np.unique(X, return_counts=True) | |
# sort_indices = np.argsort(x) | |
# x = x[sort_indices] | |
# counts = counts[sort_indices] | |
# for i in range(len(x)): | |
# ax.text(x[i], counts[i], counts[i], ha='center', va='bottom') | |
ax.grid(alpha=0.3) | |
if show_mean: | |
mean = np.mean(X) | |
mean_string = f"$\mu$: {mean:.2f}" | |
ax.set_title(title + f" ({mean_string}) ") | |
else: | |
ax.set_title(title) | |
if not show: | |
return ax | |
else: | |
plt.show() | |
"""Helper functions for all kinds of 2D/3D visualization""" | |
def bokeh_2d_scatter(x, y, desc, figsize=(700, 700), colors=None, use_nb=False, title="Bokeh scatter plot"): | |
import matplotlib.colors as mcolors | |
from bokeh.plotting import figure, output_file, show, ColumnDataSource | |
from bokeh.models import HoverTool | |
from bokeh.io import output_notebook | |
if use_nb: | |
output_notebook() | |
# define colors to be assigned | |
if colors is None: | |
# applies the same color | |
# create a color iterator: pick a random color and apply it to all points | |
# colors = [np.random.choice(itertools.cycle(palette))] * len(x) | |
colors = [np.random.choice(["red", "green", "blue", "yellow", "pink", "black", "gray"])] * len(x) | |
# # applies different colors | |
# colors = np.array([ [r, g, 150] for r, g in zip(50 + 2*x, 30 + 2*y) ], dtype="uint8") | |
# define the df of data to plot | |
source = ColumnDataSource( | |
data=dict( | |
x=x, | |
y=y, | |
desc=desc, | |
color=colors, | |
) | |
) | |
# define the attributes to show on hover | |
hover = HoverTool( | |
tooltips=[ | |
("index", "$index"), | |
("(x, y)", "($x, $y)"), | |
("Desc", "@desc"), | |
] | |
) | |
p = figure( | |
plot_width=figsize[0], plot_height=figsize[1], tools=[hover], title=title, | |
) | |
p.circle('x', 'y', size=10, source=source, fill_color="color") | |
show(p) | |
def bokeh_2d_scatter_new( | |
df, x, y, hue, label, color_column=None, size_col=None, | |
figsize=(700, 700), use_nb=False, title="Bokeh scatter plot", | |
legend_loc="bottom_left", edge_color="black", audio_col=None, | |
): | |
from bokeh.plotting import figure, output_file, show, ColumnDataSource | |
from bokeh.models import HoverTool | |
from bokeh.io import output_notebook | |
if use_nb: | |
output_notebook() | |
assert {x, y, hue, label}.issubset(set(df.keys())) | |
if isinstance(color_column, str) and color_column in df.keys(): | |
color_column_name = color_column | |
else: | |
import matplotlib.colors as mcolors | |
colors = list(mcolors.BASE_COLORS.keys()) + list(mcolors.TABLEAU_COLORS.values()) | |
# colors = list(mcolors.BASE_COLORS.keys()) | |
colors = itertools.cycle(np.unique(colors)) | |
hue_to_color = dict() | |
unique_hues = np.unique(df[hue].values) | |
for _hue in unique_hues: | |
hue_to_color[_hue] = next(colors) | |
df["color"] = df[hue].apply(lambda k: hue_to_color[k]) | |
color_column_name = "color" | |
if size_col is not None: | |
assert isinstance(size_col, str) and size_col in df.keys() | |
else: | |
sizes = [10.] * len(df) | |
df["size"] = sizes | |
size_col = "size" | |
source = ColumnDataSource( | |
dict( | |
x = df[x].values, | |
y = df[y].values, | |
hue = df[hue].values, | |
label = df[label].values, | |
color = df[color_column_name].values, | |
edge_color = [edge_color] * len(df), | |
sizes = df[size_col].values, | |
) | |
) | |
# define the attributes to show on hover | |
hover = HoverTool( | |
tooltips=[ | |
("index", "$index"), | |
("(x, y)", "($x, $y)"), | |
("Desc", "@label"), | |
("Cluster", "@hue"), | |
] | |
) | |
p = figure( | |
plot_width=figsize[0], | |
plot_height=figsize[1], | |
tools=["pan","wheel_zoom","box_zoom","save","reset","help"] + [hover], | |
title=title, | |
) | |
p.circle( | |
'x', 'y', size="sizes", | |
source=source, fill_color="color", | |
legend_group="hue", line_color="edge_color", | |
) | |
p.legend.location = legend_loc | |
p.legend.click_policy="hide" | |
show(p) | |
import torch | |
def get_sentence_embedding(model, tokenizer, sentence): | |
encoded = tokenizer.encode_plus(sentence, return_tensors="pt") | |
with torch.no_grad(): | |
output = model(**encoded) | |
last_hidden_state = output.last_hidden_state | |
assert last_hidden_state.shape[0] == 1 | |
assert last_hidden_state.shape[-1] == 768 | |
# only pick the [CLS] token embedding (sentence embedding) | |
sentence_embedding = last_hidden_state[0, 0] | |
return sentence_embedding | |
def lighten_color(color, amount=0.5): | |
""" | |
Lightens the given color by multiplying (1-luminosity) by the given amount. | |
Input can be matplotlib color string, hex string, or RGB tuple. | |
Examples: | |
>> lighten_color('g', 0.3) | |
>> lighten_color('#F034A3', 0.6) | |
>> lighten_color((.3,.55,.1), 0.5) | |
""" | |
import matplotlib.colors as mc | |
import colorsys | |
try: | |
c = mc.cnames[color] | |
except: | |
c = color | |
c = colorsys.rgb_to_hls(*mc.to_rgb(c)) | |
return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2]) | |
def plot_histogram(df, col, ax=None, color="blue", title=None, xlabel=None, **kwargs): | |
if ax is None: | |
fig, ax = plt.subplots(1, 1, figsize=(5, 4)) | |
ax.grid(alpha=0.3) | |
xlabel = col if xlabel is None else xlabel | |
ax.set_xlabel(xlabel) | |
ax.set_ylabel("Frequency") | |
title = f"Historgam of {col}" if title is None else title | |
ax.set_title(title) | |
label = f"Mean: {np.round(df[col].mean(), 1)}" | |
ax.hist(df[col].values, density=False, color=color, edgecolor=lighten_color(color, 0.1), label=label, **kwargs) | |
if "bins" in kwargs: | |
xticks = list(np.arange(kwargs["bins"])[::5]) | |
xticks += list(np.linspace(xticks[-1], int(df[col].max()), 5, dtype=int)) | |
# print(xticks) | |
ax.set_xticks(xticks) | |
ax.legend() | |
plt.show() | |
def beautify_ax(ax, title=None, titlesize=20, sizealpha=0.7, xlabel=None, ylabel=None): | |
labelsize = sizealpha * titlesize | |
ax.grid(alpha=0.3) | |
ax.set_xlabel(xlabel, fontsize=labelsize) | |
ax.set_ylabel(ylabel, fontsize=labelsize) | |
ax.set_title(title, fontsize=titlesize) | |
def get_text_features(text: list, model, device, batch_size=16): | |
import clip | |
text_batches = [text[i:i+batch_size] for i in range(0, len(text), batch_size)] | |
text_features = [] | |
model = model.to(device) | |
model = model.eval() | |
for batch in tqdm(text_batches, desc="Getting text features", bar_format="{l_bar}{bar:20}{r_bar}"): | |
batch = clip.tokenize(batch).to(device) | |
with torch.no_grad(): | |
batch_features = model.encode_text(batch) | |
text_features.append(batch_features.cpu().numpy()) | |
text_features = np.concatenate(text_features, axis=0) | |
return text_features | |
from sklearn.manifold import TSNE | |
def reduce_dim(X, perplexity=30, n_iter=1000): | |
tsne = TSNE( | |
n_components=2, | |
perplexity=perplexity, | |
n_iter=n_iter, | |
init='pca', | |
# learning_rate="auto", | |
) | |
Z = tsne.fit_transform(X) | |
return Z | |
from IPython.display import Video | |
def show_video(video_path): | |
"""Show a video in a Jupyter notebook""" | |
assert exists(video_path), f"Video path {video_path} does not exist" | |
# display the video in a Jupyter notebook | |
return Video(video_path, embed=True, width=480) | |
# Video(video_path, embed=True, width=600, height=400) | |
# html_attributes="controls autoplay loop muted" | |
def show_single_audio(filepath=None, data=None, rate=None, start=None, end=None, label="Sample audio"): | |
if filepath is None: | |
assert data is not None and rate is not None, "Either filepath or data and rate must be provided" | |
args = dict(data=data, rate=rate) | |
else: | |
assert data is None and rate is None, "Either filepath or data and rate must be provided" | |
data, rate = librosa.load(filepath) | |
# args = dict(filename=filepath) | |
args = dict(data=data, rate=rate) | |
if start is not None and end is not None: | |
start = max(int(start * rate), 0) | |
end = min(int(end * rate), len(data)) | |
else: | |
start = 0 | |
end = len(data) | |
data = data[start:end] | |
args["data"] = data | |
if label is None: | |
label = "Sample audio" | |
label = Label(f"{label}") | |
out = widgets.Output() | |
with out: | |
display(Audio(**args)) | |
vbox = VBox([label, out]) | |
return vbox | |
def show_single_audio_with_spectrogram(filepath=None, data=None, rate=None, label="Sample audio", figsize=(6, 2)): | |
if filepath is None: | |
assert data is not None and rate is not None, "Either filepath or data and rate must be provided" | |
else: | |
data, rate = librosa.load(filepath) | |
# Show audio | |
vbox = show_single_audio(data=data, rate=rate, label=label) | |
# get width of audio widget | |
width = vbox.children[1].layout.width | |
# Show spectrogram | |
spec_out = widgets.Output() | |
D = librosa.stft(data) # STFT of y | |
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max) | |
with spec_out: | |
fig, ax = plt.subplots(figsize=figsize) | |
img = librosa.display.specshow( | |
S_db, | |
ax=ax, | |
x_axis='time', | |
# y_axis='linear', | |
) | |
# img = widgets.Image.from_file(fig) | |
# import ipdb; ipdb.set_trace() | |
# img = widgets.Image(img) | |
# add image to vbox | |
vbox.children += (spec_out,) | |
return vbox | |
def show_spectrogram(audio_path=None, data=None, rate=None, figsize=(6, 2), ax=None, show=True): | |
if data is None and rate is None: | |
# Show spectrogram | |
data, rate = librosa.load(audio_path) | |
else: | |
assert audio_path is None, "Either audio_path or data and rate must be provided" | |
hop_length = 512 | |
D = librosa.stft(data, n_fft=2048, hop_length=hop_length, win_length=2048) # STFT of y | |
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max) | |
# Create spectrogram plot widget | |
if ax is None: | |
fig, ax = plt.subplots(1, 1, figsize=figsize) | |
im = ax.imshow(S_db, origin='lower', aspect='auto', cmap='inferno') | |
# Replace xtixks with time | |
xticks = ax.get_xticks() | |
time_in_seconds = librosa.frames_to_time(xticks, sr=rate, hop_length=hop_length) | |
ax.set_xticklabels(np.round(time_in_seconds, 1)) | |
ax.set_xlabel('Time') | |
ax.set_yticks([]) | |
if ax is None: | |
plt.close(fig) | |
# Create widget output | |
spec_out = widgets.Output() | |
with spec_out: | |
display(fig) | |
return spec_out | |
def show_single_video_and_spectrogram( | |
video_path, audio_path, | |
label="Sample video", figsize=(6, 2), | |
width=480, | |
show_spec_stats=False, | |
): | |
# Show video | |
vbox = show_single_video(video_path, label=label, width=width) | |
# get width of video widget | |
width = vbox.children[1].layout.width | |
# Show spectrogram | |
data, rate = librosa.load(audio_path) | |
hop_length = 512 | |
D = librosa.stft(data, n_fft=2048, hop_length=hop_length, win_length=2048) # STFT of y | |
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max) | |
# Create spectrogram plot widget | |
fig, ax = plt.subplots(1, 1, figsize=figsize) | |
im = ax.imshow(S_db, origin='lower', aspect='auto', cmap='inferno') | |
# Replace xtixks with time | |
xticks = ax.get_xticks() | |
time_in_seconds = librosa.frames_to_time(xticks, sr=rate, hop_length=hop_length) | |
ax.set_xticklabels(np.round(time_in_seconds, 1)) | |
ax.set_xlabel('Time') | |
ax.set_yticks([]) | |
plt.close(fig) | |
# Create widget output | |
spec_out = widgets.Output() | |
with spec_out: | |
display(fig) | |
vbox.children += (spec_out,) | |
if show_spec_stats: | |
# Compute mean of spectrogram over frequency axis | |
eps = 1e-5 | |
S_db_normalized = (S_db - S_db.mean(axis=1)[:, None]) / (S_db.std(axis=1)[:, None] + eps) | |
S_db_over_time = S_db_normalized.sum(axis=0) | |
# Plot S_db_over_time | |
fig, ax = plt.subplots(1, 1, figsize=(6, 2)) | |
# ax.set_title("Spectrogram over time") | |
ax.grid(alpha=0.5) | |
x = np.arange(len(S_db_over_time)) | |
x = librosa.frames_to_time(x, sr=rate, hop_length=hop_length) | |
x = np.round(x, 1) | |
ax.plot(x, S_db_over_time) | |
ax.set_xlabel('Time') | |
ax.set_yticks([]) | |
plt.close(fig) | |
plot_out = widgets.Output() | |
with plot_out: | |
display(fig) | |
vbox.children += (plot_out,) | |
return vbox | |
def show_single_spectrogram( | |
filepath=None, | |
data=None, | |
rate=None, | |
start=None, | |
end=None, | |
ax=None, | |
label="Sample spectrogram", | |
figsize=(6, 2), | |
xlabel="Time", | |
): | |
if filepath is None: | |
assert data is not None and rate is not None, "Either filepath or data and rate must be provided" | |
else: | |
rate = 22050 | |
offset = start or 0 | |
clip_duration = end - start if end is not None else None | |
data, rate = librosa.load(filepath, sr=rate, offset=offset, duration=clip_duration) | |
# start = 0 if start is None else int(rate * start) | |
# end = len(data) if end is None else int(rate * end) | |
# data = data[start:end] | |
# Show spectrogram | |
spec_out = widgets.Output() | |
D = librosa.stft(data) # STFT of y | |
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max) | |
if ax is None: | |
fig, ax = plt.subplots(figsize=figsize) | |
with spec_out: | |
img = librosa.display.specshow( | |
S_db, | |
ax=ax, | |
x_axis='time', | |
sr=rate, | |
# y_axis='linear', | |
) | |
ax.set_xlabel(xlabel) | |
ax.margins(x=0) | |
plt.subplots_adjust(wspace=0, hspace=0) | |
# img = widgets.Image.from_file(fig) | |
# import ipdb; ipdb.set_trace() | |
# img = widgets.Image(img) | |
# add image to vbox | |
vbox = VBox([spec_out]) | |
return vbox | |
# return spec_out | |
# from decord import VideoReader | |
def show_single_video(filepath, label="Sample video", width=480, fix_resolution=True): | |
if label is None: | |
label = "Sample video" | |
height = None | |
if fix_resolution: | |
aspect_ratio = 16. / 9. | |
height = int(width * (1/ aspect_ratio)) | |
label = Label(f"{label}") | |
out = widgets.Output() | |
with out: | |
display(Video(filepath, embed=True, width=width, height=height)) | |
vbox = VBox([label, out]) | |
return vbox | |
def show_grid_of_audio(files, starts=None, ends=None, labels=None, ncols=None, show_spec=False): | |
for f in files: | |
assert os.path.exists(f), f"File {f} does not exist." | |
if labels is None: | |
labels = [None] * len(files) | |
if starts is None: | |
starts = [None] * len(files) | |
if ends is None: | |
ends = [None] * len(files) | |
assert len(files) == len(labels) | |
if ncols is None: | |
ncols = 3 | |
nfiles = len(files) | |
nrows = nfiles // ncols + (nfiles % ncols != 0) | |
# print(nrows, ncols) | |
for i in range(nrows): | |
row_hbox = [] | |
for j in range(ncols): | |
idx = i * ncols + j | |
# print(i, j, idx) | |
if idx < len(files): | |
file, label = files[idx], labels[idx] | |
start, end = starts[idx], ends[idx] | |
vbox = show_single_audio( | |
filepath=file, label=label, start=start, end=end | |
) | |
if show_spec: | |
spec_box = show_spectrogram(file, figsize=(3.6, 1)) | |
# Add spectrogram to vbox | |
vbox.children += (spec_box,) | |
# if not show_spec: | |
# vbox = show_single_audio( | |
# filepath=file, label=label, start=start, end=end | |
# ) | |
# else: | |
# vbox = show_single_audio_with_spectrogram( | |
# filepath=file, label=label | |
# ) | |
row_hbox.append(vbox) | |
row_hbox = HBox(row_hbox) | |
display(row_hbox) | |
def show_grid_of_videos( | |
files, | |
cut=False, | |
starts=None, | |
ends=None, | |
labels=None, | |
ncols=None, | |
width_overflow=False, | |
show_spec=False, | |
width_of_screen=1000, | |
): | |
from moviepy.editor import VideoFileClip | |
for f in files: | |
assert os.path.exists(f), f"File {f} does not exist." | |
if labels is None: | |
labels = [None] * len(files) | |
if starts is not None and ends is not None: | |
cut = True | |
if starts is None: | |
starts = [None] * len(files) | |
if ends is None: | |
ends = [None] * len(files) | |
assert len(files) == len(labels) == len(starts) == len(ends) | |
# cut the videos to the specified duration | |
if cut: | |
cut_files = [] | |
for i, f in enumerate(files): | |
start, end = starts[i], ends[i] | |
tmp_f = os.path.join(os.path.expanduser("~"), f"tmp/clip_{i}.mp4") | |
cut_files.append(tmp_f) | |
video = VideoFileClip(f) | |
start = 0 if start is None else start | |
end = video.duration-1 if end is None else end | |
# print(start, end) | |
video.subclip(start, end).write_videofile(tmp_f, logger=None, verbose=False) | |
files = cut_files | |
if ncols is None: | |
ncols = 3 | |
width_of_screen = 1000 | |
# get width of the whole display screen | |
if not width_overflow: | |
width_of_single_video = width_of_screen // ncols | |
else: | |
width_of_single_video = 280 | |
nfiles = len(files) | |
nrows = nfiles // ncols + (nfiles % ncols != 0) | |
# print(nrows, ncols) | |
for i in range(nrows): | |
row_hbox = [] | |
for j in range(ncols): | |
idx = i * ncols + j | |
# print(i, j, idx) | |
if idx < len(files): | |
file, label = files[idx], labels[idx] | |
if not show_spec: | |
vbox = show_single_video(file, label, width_of_single_video) | |
else: | |
vbox = show_single_video_and_spectrogram(file, file, width=width_of_single_video, label=label) | |
row_hbox.append(vbox) | |
row_hbox = HBox(row_hbox) | |
display(row_hbox) | |
def preview_video(fp, label="Sample video frames", mode="uniform", frames_to_show=6): | |
from decord import VideoReader | |
assert exists(fp), f"Video does not exist at {fp}" | |
vr = VideoReader(fp) | |
nfs = len(vr) | |
fps = vr.get_avg_fps() | |
dur = nfs / fps | |
if mode == "all": | |
frame_indices = np.arange(nfs) | |
elif mode == "uniform": | |
frame_indices = np.linspace(0, nfs - 1, frames_to_show, dtype=int) | |
elif mode == "random": | |
frame_indices = np.random.randint(0, nfs - 1, replace=False) | |
frame_indices = sorted(frame_indices) | |
else: | |
raise ValueError(f"Unknown frame viewing mode {mode}.") | |
# Show grid of image | |
images = vr.get_batch(frame_indices).asnumpy() | |
show_grid_of_images(images, n_cols=len(frame_indices), title=label, figsize=(12, 2.3), titlesize=10) | |
def preview_multiple_videos(fps, labels, mode="uniform", frames_to_show=6): | |
for fp in fps: | |
assert exists(fp), f"Video does not exist at {fp}" | |
for fp, label in zip(fps, labels): | |
preview_video(fp, label, mode=mode, frames_to_show=frames_to_show) | |
def show_small_clips_in_a_video( | |
video_path, | |
clip_segments: list, | |
width=360, | |
labels=None, | |
show_spec=False, | |
resize=False, | |
): | |
from moviepy.editor import VideoFileClip | |
from ipywidgets import Layout | |
video = VideoFileClip(video_path) | |
if resize: | |
# Resize the video | |
print("Resizing the video to width", width) | |
video = video.resize(width=width) | |
if labels is None: | |
labels = [ | |
f"Clip {i+1} [{clip_segments[i][0]} : {clip_segments[i][1]}]" for i in range(len(clip_segments)) | |
] | |
else: | |
assert len(labels) == len(clip_segments) | |
tmp_dir = os.path.join(os.path.expanduser("~"), "tmp") | |
tmp_clippaths = [f"{tmp_dir}/clip_{i}.mp4" for i in range(len(clip_segments))] | |
iterator = tqdm_iterator(zip(clip_segments, tmp_clippaths), total=len(clip_segments), desc="Preparing clips") | |
clips = [ | |
video.subclip(x, y).write_videofile(f, logger=None, verbose=False) \ | |
for (x, y), f in iterator | |
] | |
# show_grid_of_videos(tmp_clippaths, labels, ncols=len(clips), width_overflow=True) | |
hbox = [] | |
for i in range(len(clips)): | |
# vbox = show_single_video(tmp_clippaths[i], labels[i], width=280) | |
vbox = widgets.Output() | |
with vbox: | |
if show_spec: | |
display( | |
show_single_video_and_spectrogram( | |
tmp_clippaths[i], tmp_clippaths[i], | |
width=width, figsize=(4.4, 1.5), | |
) | |
) | |
else: | |
display(Video(tmp_clippaths[i], embed=True, width=width)) | |
# reduce vspace between video and label | |
display(Label(labels[i], layout=Layout(margin="-8px 0px 0px 0px"))) | |
# if show_spec: | |
# display(show_single_spectrogram(tmp_clippaths[i], figsize=(4.5, 1.5))) | |
hbox.append(vbox) | |
hbox = HBox(hbox) | |
display(hbox) | |
def show_single_video_and_audio( | |
video_path, audio_path, label="Sample video and audio", | |
start=None, end=None, width=360, sr=44100, show=True, | |
): | |
from moviepy.editor import VideoFileClip | |
# Load video | |
video = VideoFileClip(video_path) | |
video_args = {"embed": True, "width": width} | |
filepath = video_path | |
# Load audio | |
audio_waveform, sr = librosa.load(audio_path, sr=sr) | |
audio_args = {"data": audio_waveform, "rate": sr} | |
if start is not None and end is not None: | |
# Cut video from start to end | |
tmp_dir = os.path.join(os.path.expanduser("~"), "tmp") | |
clip_path = os.path.join(tmp_dir, "clip_sample.mp4") | |
video.subclip(start, end).write_videofile(clip_path, logger=None, verbose=False) | |
filepath = clip_path | |
# Cut audio from start to end | |
audio_waveform = audio_waveform[int(start * sr): int(end * sr)] | |
audio_args["data"] = audio_waveform | |
out = widgets.Output() | |
with out: | |
label = f"{label} [{start} : {end}]" | |
display(Label(label)) | |
display(Video(filepath, **video_args)) | |
display(Audio(**audio_args)) | |
if show: | |
display(out) | |
else: | |
return out | |
def plot_waveform(waveform, sample_rate, figsize=(10, 2), ax=None, skip=100, show=True, title=None): | |
if isinstance(waveform, torch.Tensor): | |
waveform = waveform.numpy() | |
time_axis = torch.arange(0, len(waveform)) / sample_rate | |
waveform = waveform[::skip] | |
time_axis = time_axis[::skip] | |
if len(waveform.shape) == 1: | |
num_channels = 1 | |
num_frames = waveform.shape[0] | |
waveform = waveform.reshape(1, num_frames) | |
elif len(waveform.shape) == 2: | |
num_channels, num_frames = waveform.shape | |
else: | |
raise ValueError(f"Waveform has invalid shape {waveform.shape}") | |
if ax is None: | |
figure, axes = plt.subplots(num_channels, 1, figsize=figsize) | |
if num_channels == 1: | |
axes = [axes] | |
for c in range(num_channels): | |
axes[c].plot(time_axis, waveform[c], linewidth=1) | |
axes[c].grid(True) | |
if num_channels > 1: | |
axes[c].set_ylabel(f"Channel {c+1}") | |
figure.suptitle(title) | |
else: | |
assert num_channels == 1 | |
ax.plot(time_axis, waveform[0], linewidth=1) | |
ax.grid(True) | |
# ax.set_xticks([]) | |
# ax.set_yticks([]) | |
# ax.set_xlim(-0.1, 0.1) | |
ax.set_ylim(-0.05, 0.05) | |
if show: | |
plt.show(block=False) | |
def show_waveform_as_image(waveform, sr=16000): | |
"""Plots a waveform as plt fig and converts into PIL.Image""" | |
fig, ax = plt.subplots(figsize=(10, 2)) | |
plot_waveform(waveform, sr, ax=ax, show=False) | |
fig.canvas.draw() | |
img = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb()) | |
plt.close(fig) | |
return img | |
def plot_raw_audio_signal_with_markings(signal: np.ndarray, markings: list, | |
title: str = 'Raw audio signal with markings', | |
figsize: tuple = (23, 4), | |
): | |
plt.figure(figsize=figsize) | |
plt.grid() | |
plt.plot(signal) | |
for value in markings: | |
plt.axvline(x=value, c='red') | |
plt.xlabel('Time') | |
plt.title(title) | |
plt.show() | |
plt.close() | |
def get_concat_h(im1, im2): | |
"""Concatenate two images horizontally""" | |
dst = Image.new('RGB', (im1.width + im2.width, im1.height)) | |
dst.paste(im1, (0, 0)) | |
dst.paste(im2, (im1.width, 0)) | |
return dst | |
def concat_images(images): | |
im1 = images[0] | |
canvas_height = max([im.height for im in images]) | |
dst = Image.new('RGB', (sum([im.width for im in images]), im1.height)) | |
start_width = 0 | |
for i, im in enumerate(images): | |
if im.height < canvas_height: | |
start_height = (canvas_height - im.height) // 2 | |
else: | |
start_height = 0 | |
print(i, start_height) | |
dst.paste(im, (start_width, start_height)) | |
start_width += im.width | |
return dst | |
def concat_images_with_border(images, border_width=5, border_color="white"): | |
im1 = images[0] | |
total_width = sum([im.width for im in images]) + (len(images) - 1) * border_width | |
max_height = max([im.height for im in images]) | |
dst = Image.new( | |
'RGB', | |
(total_width, max_height), | |
border_color, | |
) | |
start_width = 0 | |
uniform_height = im1.height | |
canvas_height = max([im.height for im in images]) | |
for i, im in enumerate(images): | |
# if im.height != uniform_height: | |
# im = resize_height(im.copy(), uniform_height) | |
if im.height < canvas_height: | |
start_height = (canvas_height - im.height) // 2 | |
# Pad with zeros at top and bottom | |
im = ImageOps.expand( | |
im, border=(0, start_height, 0, canvas_height - im.height - start_height), | |
) | |
start_height = 0 | |
else: | |
start_height = 0 | |
dst.paste(im, (start_width, start_height)) | |
start_width += im.width + border_width | |
return dst | |
def concat_images_vertically(images): | |
im1 = images[0] | |
dst = Image.new('RGB', (im1.width, sum([im.height for im in images]))) | |
start_height = 0 | |
for i, im in enumerate(images): | |
dst.paste(im, (0, start_height)) | |
start_height += im.height | |
return dst | |
def concat_images_vertically_with_border(images, border_width=5, border_color="white"): | |
im1 = images[0] | |
dst = Image.new('RGB', (im1.width, sum([im.height for im in images]) + (len(images) - 1) * border_width), border_color) | |
start_height = 0 | |
for i, im in enumerate(images): | |
dst.paste(im, (0, start_height)) | |
start_height += im.height + border_width | |
return dst | |
def get_concat_v(im1, im2): | |
"""Concatenate two images vertically""" | |
dst = Image.new('RGB', (im1.width, im1.height + im2.height)) | |
dst.paste(im1, (0, 0)) | |
dst.paste(im2, (0, im1.height)) | |
return dst | |
def set_latex_fonts(usetex=True, fontsize=14, show_sample=False, **kwargs): | |
try: | |
plt.rcParams.update({ | |
"text.usetex": usetex, | |
"font.family": "serif", | |
"font.serif": ["Computer Modern Roman"], | |
"font.size": fontsize, | |
**kwargs, | |
}) | |
if show_sample: | |
plt.figure() | |
plt.title("Sample $y = x^2$") | |
plt.plot(np.arange(0, 10), np.arange(0, 10)**2, "--o") | |
plt.grid() | |
plt.show() | |
except: | |
print("Failed to setup LaTeX fonts. Proceeding without.") | |
pass | |
def get_colors(num_colors, palette="jet"): | |
cmap = plt.get_cmap(palette) | |
colors = [cmap(i) for i in np.linspace(0, 1, num_colors)] | |
return colors | |
def add_box_on_image(image, bbox, color="red", thickness=3, resized=False, fillcolor=None, fillalpha=0.2): | |
""" | |
Adds bounding box on image. | |
Args: | |
image (PIL.Image): image | |
bbox (list): [xmin, ymin, xmax, ymax] | |
color: - | |
thickness: - | |
""" | |
image = image.copy().convert("RGB") | |
# color = get_predominant_color(color) | |
color = PIL.ImageColor.getrgb(color) | |
# Apply alpha to fillcolor | |
if fillcolor is not None: | |
if isinstance(fillcolor, str): | |
fillcolor = PIL.ImageColor.getrgb(fillcolor) | |
fillcolor= fillcolor + (int(fillalpha * 255),) | |
elif isinstance(fillcolor, tuple): | |
if len(fillcolor) == 3: | |
fillcolor= fillcolor + (int(fillalpha * 255),) | |
else: | |
pass | |
# Create an instance of the ImageDraw class | |
draw = ImageDraw.Draw(image, "RGBA") | |
# Draw the bounding box on the image | |
draw.rectangle(bbox, outline=color, width=thickness, fill=fillcolor) | |
# Resize | |
new_width, new_height = (320, 240) | |
if resized: | |
image = image.resize((new_width, new_height)) | |
return image | |
def add_multiple_boxes_on_image(image, bboxes, colors=None, thickness=3, resized=False, fillcolor=None, fillalpha=0.2): | |
image = image.copy().convert("RGB") | |
if colors is None: | |
colors = ["red"] * len(bboxes) | |
for bbox, color in zip(bboxes, colors): | |
image = add_box_on_image(image, bbox, color, thickness, resized, fillcolor, fillalpha) | |
return image | |
def colorize_mask(mask, color="red"): | |
# mask = mask.convert("RGBA") | |
color = PIL.ImageColor.getrgb(color) | |
mask = ImageOps.colorize(mask, (0, 0, 0, 0), color) | |
return mask | |
def add_mask_on_image(image: Image, mask: Image, color="green", alpha=0.5): | |
image = image.copy() | |
mask = mask.copy() | |
# get color if it is a string | |
if isinstance(color, str): | |
color = PIL.ImageColor.getrgb(color) | |
# color = get_predominant_color(color) | |
mask = ImageOps.colorize(mask, (0, 0, 0, 0), color) | |
mask = mask.convert("RGB") | |
assert (mask.size == image.size) | |
assert (mask.mode == image.mode) | |
# Blend the original image and the segmentation mask with a 50% weight | |
blended_image = Image.blend(image, mask, alpha) | |
return blended_image | |
def blend_images(img1, img2, alpha=0.5): | |
# Convert images to RGBA | |
img1 = img1.convert("RGBA") | |
img2 = img2.convert("RGBA") | |
alpha_blended = Image.blend(img1, img2, alpha=alpha) | |
# Convert back to RGB | |
alpha_blended = alpha_blended.convert("RGB") | |
return alpha_blended | |
def visualize_youtube_clip( | |
youtube_id, st, et, label="", | |
show_spec=False, | |
video_width=360, video_height=240, | |
): | |
url = f"https://www.youtube.com/embed/{youtube_id}?start={int(st)}&end={int(et)}" | |
video_html_code = f""" | |
<iframe height="{video_height}" width="{video_width}" src="{url}" frameborder="0" allowfullscreen></iframe> | |
""" | |
label_html_code = f"""<b>Caption</b>: {label} <br> <b>Time</b>: {st} to {et}""" | |
# Show label and video below it | |
label = widgets.HTML(label_html_code) | |
video = widgets.HTML(video_html_code) | |
if show_spec: | |
import pytube | |
import base64 | |
from io import BytesIO | |
from moviepy.video.io.VideoFileClip import VideoFileClip | |
from moviepy.audio.io.AudioFileClip import AudioFileClip | |
# Load audio directly from youtube | |
video_url = f"https://www.youtube.com/watch?v={youtube_id}" | |
yt = pytube.YouTube(video_url) | |
# Get the audio stream | |
audio_stream = yt.streams.filter(only_audio=True).first() | |
# Download audio stream | |
# audio_file = os.path.join("/tmp", "sample_audio.mp3") | |
audio_stream.download(output_path='/tmp', filename='sample.mp4') | |
audio_clip = AudioFileClip("/tmp/sample.mp4") | |
audio_subclip = audio_clip.subclip(st, et) | |
sr = audio_subclip.fps | |
y = audio_subclip.to_soundarray().mean(axis=1) | |
audio_subclip.close() | |
audio_clip.close() | |
# Compute spectrogram in librosa | |
S_db = librosa.power_to_db(librosa.feature.melspectrogram(y, sr=sr), ref=np.max) | |
# Compute width in cms from video_width | |
width = video_width / plt.rcParams["figure.dpi"] + 0.63 | |
height = video_height / plt.rcParams["figure.dpi"] | |
out = widgets.Output() | |
with out: | |
fig, ax = plt.subplots(figsize=(width, height)) | |
librosa.display.specshow(S_db, sr=sr, x_axis='time', ax=ax) | |
ax.set_ylabel("Frequency (Hz)") | |
else: | |
out = widgets.Output() | |
vbox = widgets.VBox([label, video, out]) | |
return vbox | |
def visualize_pair_of_youtube_clips(clip_a, clip_b): | |
yt_id_a = clip_a["youtube_id"] | |
label_a = clip_a["sentence"] | |
st_a, et_a = clip_a["time"] | |
yt_id_b = clip_b["youtube_id"] | |
label_b = clip_b["sentence"] | |
st_b, et_b = clip_b["time"] | |
# Show the clips side by side | |
clip_a = visualize_youtube_clip(yt_id_a, st_a, et_a, label_a, show_spec=True) | |
# clip_a = widgets.Output() | |
# with clip_a: | |
# visualize_youtube_clip(yt_id_a, st_a, et_a, label_a, show_spec=True) | |
clip_b = visualize_youtube_clip(yt_id_b, st_b, et_b, label_b, show_spec=True) | |
# clip_b = widgets.Output() | |
# with clip_b: | |
# visualize_youtube_clip(yt_id_b, st_b, et_b, label_b, show_spec=True) | |
hbox = HBox([ | |
clip_a, clip_b | |
]) | |
display(hbox) | |
def plot_1d(x: np.ndarray, figsize=(6, 2), title=None, xlabel=None, ylabel=None, show=True, **kwargs): | |
assert (x.ndim == 1) | |
fig, ax = plt.subplots(figsize=figsize) | |
ax.grid(alpha=0.3) | |
ax.set_title(title) | |
ax.set_xlabel(xlabel) | |
ax.set_ylabel(ylabel) | |
ax.plot(np.arange(len(x)), x, **kwargs) | |
if show: | |
plt.show() | |
else: | |
plt.close() | |
return fig | |
def make_grid(cols,rows): | |
import streamlit as st | |
grid = [0]*cols | |
for i in range(cols): | |
with st.container(): | |
grid[i] = st.columns(rows) | |
return grid | |
def display_clip(video_path, stime, etime, label=None): | |
"""Displays clip at index i.""" | |
assert exists(video_path), f"Video does not exist at {video_path}" | |
display( | |
show_small_clips_in_a_video( | |
video_path, [(stime, etime)], labels=[label], | |
), | |
) | |
def countplot(df, column, title=None, rotation=90, ylabel="Count", figsize=(8, 5), ax=None, show=True, show_counts=False): | |
if ax is None: | |
fig, ax = plt.subplots(figsize=figsize) | |
ax.grid(alpha=0.4) | |
ax.set_xlabel(column) | |
ax.set_ylabel(ylabel) | |
ax.set_title(title) | |
data = dict(df[column].value_counts()) | |
# Extract keys and values from the dictionary | |
categories = list(data.keys()) | |
counts = list(data.values()) | |
# Create a countplot | |
ax.bar(categories, counts) | |
ax.set_xticklabels(categories, rotation=rotation) | |
# Show count values on top of bars | |
if show_counts: | |
max_v = max(counts) | |
for i, v in enumerate(counts): | |
delta = 0.01 * max_v | |
ax.text(i, v + delta, str(v), ha="center") | |
if show: | |
plt.show() | |
def get_linspace_colors(cmap_name='viridis', num_colors = 10): | |
import matplotlib.colors as mcolors | |
# Get the colormap object | |
cmap = plt.cm.get_cmap(cmap_name) | |
# Get the evenly spaced indices | |
indices = np.arange(0, 1, 1./num_colors) | |
# Get the corresponding colors from the colormap | |
colors = [mcolors.to_hex(cmap(idx)) for idx in indices] | |
return colors | |
def hex_to_rgb(colors): | |
from PIL import ImageColor | |
return [ImageColor.getcolor(c, "RGB") for c in colors] | |
def plot_audio_feature(times, feature, feature_label="Feature", xlabel="Time", figsize=(20, 2)): | |
fig, ax = plt.subplots(1, 1, figsize=figsize) | |
ax.grid(alpha=0.4) | |
ax.set_xlabel(xlabel) | |
ax.set_ylabel(feature_label) | |
ax.set_yticks([]) | |
ax.plot(times, feature, '--', linewidth=0.5) | |
plt.show() | |
def compute_rms(y, frame_length=512): | |
rms = librosa.feature.rms(y=y, frame_length=frame_length)[0] | |
times = librosa.samples_to_time(frame_length * np.arange(len(rms))) | |
return times, rms | |
def plot_audio_features(path, label, show=True, show_video=True, features=["rms"], frame_length=512, figsize=(5, 2), return_features=False): | |
# Load audio | |
y, sr = librosa.load(path) | |
# Show video | |
if show_video: | |
if show: | |
display( | |
show_single_video_and_spectrogram( | |
path, path, label=label, figsize=figsize, | |
width=410, | |
) | |
) | |
else: | |
if show: | |
# Show audio and spectrogram | |
display( | |
show_single_audio_with_spectrogram(path, label=label, figsize=figsize) | |
) | |
feature_data = dict() | |
for f in features: | |
fn = eval(f"compute_{f}") | |
args = dict(y=y, frame_length=frame_length) | |
xvals, yvals = fn(**args) | |
feature_data[f] = (xvals, yvals) | |
if show: | |
display( | |
plot_audio_feature( | |
xvals, yvals, feature_label=f.upper(), figsize=(figsize[0] - 0.25, figsize[1]), | |
) | |
) | |
if return_features: | |
return feature_data | |
def rescale_frame(frame, scale=1.): | |
"""Rescales a frame by a factor of scale.""" | |
return frame.resize((int(frame.width * scale), int(frame.height * scale))) | |
def save_gif(images, path, duration=None, fps=30): | |
import imageio | |
images = [np.asarray(image) for image in images] | |
if fps is not None: | |
imageio.mimsave(path, images, fps=fps) | |
else: | |
assert duration is not None | |
imageio.mimsave(path, images, duration=duration) | |
def show_subsampled_frames(frames, n_show, figsize=(15, 3), as_canvas=True): | |
indices = np.arange(len(frames)) | |
indices = np.linspace(0, len(frames) - 1, n_show, dtype=int) | |
show_frames = [frames[i] for i in indices] | |
if as_canvas: | |
return concat_images(show_frames) | |
else: | |
show_grid_of_images(show_frames, n_cols=n_show, figsize=figsize, subtitles=indices) | |
def tensor_to_heatmap(x, scale=True, cmap="viridis", flip_vertically=False): | |
import PIL | |
if isinstance(x, torch.Tensor): | |
x = x.numpy() | |
if scale: | |
x = (x - x.min()) / (x.max() - x.min()) | |
cm = plt.get_cmap(cmap) | |
if flip_vertically: | |
x = np.flip(x, axis=0) # put low frequencies at the bottom in image | |
x = cm(x) | |
x = (x * 255).astype(np.uint8) | |
if x.shape[-1] == 3: | |
x = PIL.Image.fromarray(x, mode="RGB") | |
elif x.shape[-1] == 4: | |
x = PIL.Image.fromarray(x, mode="RGBA").convert("RGB") | |
else: | |
raise ValueError(f"Invalid shape {x.shape}") | |
return x | |
def batch_tensor_to_heatmap(x, scale=True, cmap="viridis", flip_vertically=False, resize=None): | |
y = [] | |
for i in range(len(x)): | |
h = tensor_to_heatmap(x[i], scale, cmap, flip_vertically) | |
if resize is not None: | |
h = h.resize(resize) | |
y.append(h) | |
return y | |
def change_contrast(img, level): | |
factor = (259 * (level + 255)) / (255 * (259 - level)) | |
def contrast(c): | |
return 128 + factor * (c - 128) | |
return img.point(contrast) | |
def change_brightness(img, alpha): | |
import PIL | |
enhancer = PIL.ImageEnhance.Brightness(img) | |
# to reduce brightness by 50%, use factor 0.5 | |
img = enhancer.enhance(alpha) | |
return img | |
def draw_horizontal_lines(image, y_values, color=(255, 0, 0), colors=None, line_thickness=2): | |
""" | |
Draw horizontal lines on a PIL image at specified Y positions. | |
Args: | |
image (PIL.Image.Image): The input PIL image. | |
y_values (list or int): List of Y positions where lines will be drawn. | |
If a single integer is provided, a line will be drawn at that Y position. | |
color (tuple): RGB color tuple (e.g., (255, 0, 0) for red). | |
line_thickness (int): Thickness of the lines. | |
Returns: | |
PIL.Image.Image: The PIL image with the drawn lines. | |
""" | |
image = image.copy() | |
if isinstance(color, str): | |
color = PIL.ImageColor.getcolor(color, "RGB") | |
if colors is None: | |
colors = [color] * len(y_values) | |
else: | |
if isinstance(colors[0], str): | |
colors = [PIL.ImageColor.getcolor(c, "RGB") for c in colors] | |
if isinstance(y_values, int): | |
y_values = [y_values] | |
# Create a drawing context on the image | |
draw = PIL.ImageDraw.Draw(image) | |
if isinstance(y_values, int): | |
y_values = [y_values] | |
for y, c in zip(y_values, colors): | |
draw.line([(0, y), (image.width, y)], fill=c, width=line_thickness) | |
return image | |
def draw_vertical_lines(image, x_values, color=(255, 0, 0), colors=None, line_thickness=2): | |
""" | |
Draw vertical lines on a PIL image at specified X positions. | |
Args: | |
image (PIL.Image.Image): The input PIL image. | |
x_values (list or int): List of X positions where lines will be drawn. | |
If a single integer is provided, a line will be drawn at that X position. | |
color (tuple): RGB color tuple (e.g., (255, 0, 0) for red). | |
line_thickness (int): Thickness of the lines. | |
Returns: | |
PIL.Image.Image: The PIL image with the drawn lines. | |
""" | |
image = image.copy() | |
if isinstance(color, str): | |
color = PIL.ImageColor.getcolor(color, "RGB") | |
if colors is None: | |
colors = [color] * len(x_values) | |
else: | |
if isinstance(colors[0], str): | |
colors = [PIL.ImageColor.getcolor(c, "RGB") for c in colors] | |
if isinstance(x_values, int): | |
x_values = [x_values] | |
# Create a drawing context on the image | |
draw = PIL.ImageDraw.Draw(image) | |
if isinstance(x_values, int): | |
x_values = [x_values] | |
for x, c in zip(x_values, colors): | |
draw.line([(x, 0), (x, image.height)], fill=c, width=line_thickness) | |
return image | |
def show_arrow_on_image(image, start_loc, end_loc, color="red", thickness=3): | |
"""Draw a line on PIL image from start_loc to end_loc.""" | |
image = image.copy() | |
color = get_predominant_color(color) | |
# Create an instance of the ImageDraw class | |
draw = ImageDraw.Draw(image) | |
# Draw the bounding box on the image | |
draw.line([start_loc, end_loc], fill=color, width=thickness) | |
return image | |
def draw_arrow_on_image_cv2(image, start_loc, end_loc, color="red", thickness=2, both_ends=False): | |
image = image.copy() | |
image = np.asarray(image) | |
if isinstance(color, str): | |
color = PIL.ImageColor.getcolor(color, "RGB") | |
image = cv2.arrowedLine(image, start_loc, end_loc, color, thickness) | |
if both_ends: | |
image = cv2.arrowedLine(image, end_loc, start_loc, color, thickness) | |
return PIL.Image.fromarray(image) | |
def draw_arrow_with_text(image, start_loc, end_loc, text="", color="red", thickness=2, font_size=20, both_ends=False, delta=5): | |
image = np.asarray(image) | |
if isinstance(color, str): | |
color = PIL.ImageColor.getcolor(color, "RGB") | |
# Calculate the center point between start_loc and end_loc | |
center_x = (start_loc[0] + end_loc[0]) // 2 | |
center_y = (start_loc[1] + end_loc[1]) // 2 | |
center_point = (center_x, center_y) | |
# Draw the arrowed line | |
image = cv2.arrowedLine(image, start_loc, end_loc, color, thickness) | |
if both_ends: | |
image = cv2.arrowedLine(image, end_loc, start_loc, color, thickness) | |
# Create a PIL image from the NumPy array for drawing text | |
image_with_text = Image.fromarray(image) | |
draw = PIL.ImageDraw.Draw(image_with_text) | |
# Calculate the text size | |
# font = PIL.ImageFont.truetype("arial.ttf", font_size) | |
# This gives an error: "OSError: cannot open resource", as a hack, use the following | |
text_width, text_height = draw.textsize(text) | |
# Calculate the position to center the text | |
text_x = center_x - (text_width // 2) - delta | |
text_y = center_y - (text_height // 2) | |
# Draw the text | |
draw.text((text_x, text_y), text, color) | |
return image_with_text | |
def draw_arrowed_line(image, start_loc, end_loc, color="red", thickness=2): | |
""" | |
Draw an arrowed line on a PIL image from a starting point to an ending point. | |
Args: | |
image (PIL.Image.Image): The input PIL image. | |
start_loc (tuple): Starting point (x, y) for the arrowed line. | |
end_loc (tuple): Ending point (x, y) for the arrowed line. | |
color (str): Color of the line (e.g., 'red', 'green', 'blue'). | |
thickness (int): Thickness of the line and arrowhead. | |
Returns: | |
PIL.Image.Image: The PIL image with the drawn arrowed line. | |
""" | |
image = image.copy() | |
if isinstance(color, str): | |
color = PIL.ImageColor.getcolor(color, "RGB") | |
# Create a drawing context on the image | |
draw = ImageDraw.Draw(image) | |
# Draw a line from start to end | |
draw.line([start_loc, end_loc], fill=color, width=thickness) | |
# Calculate arrowhead points | |
arrow_size = 10 # Size of the arrowhead | |
dx = end_loc[0] - start_loc[0] | |
dy = end_loc[1] - start_loc[1] | |
length = (dx ** 2 + dy ** 2) ** 0.5 | |
cos_theta = dx / length | |
sin_theta = dy / length | |
x1 = end_loc[0] - arrow_size * cos_theta | |
y1 = end_loc[1] - arrow_size * sin_theta | |
x2 = end_loc[0] - arrow_size * sin_theta | |
y2 = end_loc[1] + arrow_size * cos_theta | |
x3 = end_loc[0] + arrow_size * sin_theta | |
y3 = end_loc[1] - arrow_size * cos_theta | |
# Draw the arrowhead triangle | |
draw.polygon([end_loc, (x1, y1), (x2, y2), (x3, y3)], fill=color) | |
return image | |
def center_crop_to_fraction(image, frac=0.5): | |
"""Center crop an image to a fraction of its original size.""" | |
width, height = image.size | |
new_width = int(width * frac) | |
new_height = int(height * frac) | |
left = (width - new_width) // 2 | |
top = (height - new_height) // 2 | |
right = (width + new_width) // 2 | |
bottom = (height + new_height) // 2 | |
return image.crop((left, top, right, bottom)) | |
def decord_load_frames(vr, frame_indices): | |
if isinstance(frame_indices, int): | |
frame_indices = [frame_indices] | |
frames = vr.get_batch(frame_indices).asnumpy() | |
frames = [Image.fromarray(frame) for frame in frames] | |
return frames | |
def paste_mask_on_image(original_image, bounding_box, mask): | |
""" | |
Paste a 2D mask onto the original image at the location specified by the bounding box. | |
Parameters: | |
- original_image (PIL.Image): The original image. | |
- bounding_box (tuple): Bounding box coordinates (left, top, right, bottom). | |
- mask (PIL.Image): The 2D mask. | |
Returns: | |
- PIL.Image: Image with the mask pasted on it. | |
Example: | |
``` | |
original_image = Image.open('original.jpg') | |
bounding_box = (100, 100, 200, 200) | |
mask = Image.open('mask.png') | |
result_image = paste_mask_on_image(original_image, bounding_box, mask) | |
result_image.show() | |
``` | |
""" | |
# Create a copy of the original image to avoid modifying the input image | |
result_image = original_image.copy() | |
# Crop the mask to the size of the bounding box | |
mask_cropped = mask.crop((0, 0, bounding_box[2] - bounding_box[0], bounding_box[3] - bounding_box[1])) | |
# Paste the cropped mask onto the original image at the specified location | |
result_image.paste(mask_cropped, (bounding_box[0], bounding_box[1])) | |
return result_image | |
def display_images_as_video_moviepy(image_list, fps=5, show=True): | |
""" | |
Display a list of PIL images as a video in Jupyter Notebook using MoviePy. | |
Parameters: | |
- image_list (list): List of PIL images. | |
- fps (int): Frames per second for the video. | |
- show (bool): Whether to display the video in the notebook. | |
Example: | |
``` | |
image_list = [Image.open('frame1.jpg'), Image.open('frame2.jpg'), ...] | |
display_images_as_video_moviepy(image_list, fps=10) | |
``` | |
""" | |
from IPython.display import display | |
from moviepy.editor import ImageSequenceClip | |
image_list = list(map(np.asarray, image_list)) | |
clip = ImageSequenceClip(image_list, fps=fps) | |
if show: | |
display(clip.ipython_display(width=200)) | |
os.remove("__temp__.mp4") | |
def resize_height(img, H): | |
w, h = img.size | |
asp_ratio = w / h | |
W = np.ceil(asp_ratio * H).astype(int) | |
return img.resize((W, H)) | |
def resize_width(img, W): | |
w, h = img.size | |
asp_ratio = w / h | |
H = int(W / asp_ratio) | |
return img.resize((W, H)) | |
def resized_minor_side(img, size=256): | |
H, W = img.size | |
if H < W: | |
H_new = size | |
W_new = int(size * W / H) | |
return img.resize((W_new, H_new)) | |
else: | |
W_new = size | |
H_new = int(size * H / W) | |
return img.resize((W_new, H_new)) | |
def brighten_image(img, alpha=1.2): | |
enhancer = PIL.ImageEnhance.Brightness(img) | |
img = enhancer.enhance(alpha) | |
return img | |
def darken_image(img, alpha=0.8): | |
enhancer = PIL.ImageEnhance.Brightness(img) | |
img = enhancer.enhance(alpha) | |
return img | |
def fig2img(fig): | |
"""Convert a Matplotlib figure to a PIL Image and return it""" | |
import io | |
buf = io.BytesIO() | |
fig.savefig(buf) | |
buf.seek(0) | |
img = Image.open(buf) | |
return img | |
def show_temporal_tsne( | |
tsne, | |
timestamps=None, | |
title="tSNE: feature vectors over time", | |
cmap='viridis', | |
ax=None, | |
fig=None, | |
show=True, | |
num_ticks=10, | |
return_as_pil=False, | |
dpi=100, | |
label='Time (s)', | |
figsize=(6, 4), | |
s=None, | |
): | |
if timestamps is None: | |
timestamps = np.arange(len(tsne)) | |
if ax is None or fig is None: | |
fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi) | |
cmap = plt.get_cmap(cmap) | |
scatter = ax.scatter( | |
tsne[:, 0], tsne[:, 1], c=np.arange(len(tsne)), cmap=cmap, s=s, | |
edgecolor='k', linewidth=0.5, | |
) | |
ax.grid(alpha=0.4) | |
ax.set_title(f"{title}", fontsize=11) | |
ax.set_xlabel("$z_{1}$") | |
ax.set_ylabel("$z_{2}$") | |
# Create a colorbar | |
cbar = fig.colorbar(scatter, ax=ax, label=label) | |
# Set custom ticks and labels on the colorbar | |
ticks = np.linspace(0, len(tsne) - 1, num_ticks, dtype=int) | |
tick_labels = np.round(timestamps[ticks], 1) | |
cbar.set_ticks(ticks) | |
cbar.set_ticklabels(tick_labels) | |
if show: | |
plt.show() | |
else: | |
if return_as_pil: | |
plt.tight_layout(pad=0.2) | |
# fig.canvas.draw() | |
# image = PIL.Image.frombytes( | |
# 'RGB', | |
# fig.canvas.get_width_height(), | |
# fig.canvas.tostring_rgb(), | |
# ) | |
# return image | |
# Return as PIL Image without displaying the plt figure | |
image = fig2img(fig) | |
plt.close(fig) | |
return image | |
def mark_keypoints(image, keypoints, color=(255, 255, 0), radius=1): | |
""" | |
Marks keypoints on an image with a given color and radius. | |
:param image: The input PIL image. | |
:param keypoints: A list of (x, y) tuples representing the keypoints. | |
:param color: The color to use for the keypoints (default: red). | |
:param radius: The radius of the circle to draw for each keypoint (default: 5). | |
:return: A new PIL image with the keypoints marked. | |
""" | |
# Make a copy of the image to avoid modifying the original | |
image_copy = image.copy() | |
# Create a draw object to add graphical elements | |
draw = ImageDraw.Draw(image_copy) | |
# Loop through each keypoint and draw a circle | |
for x, y in keypoints: | |
# Draw a circle with the specified radius and color | |
draw.ellipse( | |
(x - radius, y - radius, x + radius, y + radius), | |
fill=color, | |
width=2 | |
) | |
return image_copy | |
def draw_line_on_image(image, x_coords, y_coords, color=(255, 255, 0), width=3): | |
""" | |
Draws a line on an image given lists of x and y coordinates. | |
:param image: The input PIL image. | |
:param x_coords: List of x-coordinates for the line. | |
:param y_coords: List of y-coordinates for the line. | |
:param color: Color of the line in RGB (default is red). | |
:param width: Width of the line (default is 3). | |
:return: The PIL image with the line drawn. | |
""" | |
image = image.copy() | |
# Ensure the number of x and y coordinates are the same | |
if len(x_coords) != len(y_coords): | |
raise ValueError("x_coords and y_coords must have the same length") | |
# Create a draw object to draw on the image | |
draw = ImageDraw.Draw(image) | |
# Create a list of (x, y) coordinate tuples | |
coordinates = list(zip(x_coords, y_coords)) | |
# Draw the line connecting the coordinates | |
draw.line(coordinates, fill=color, width=width) | |
return image | |
def add_binary_strip_vertically( | |
image, | |
binary_vector, | |
strip_width=15, | |
one_color="yellow", | |
zero_color="gray", | |
): | |
""" | |
Add a binary strip to the right side of an image. | |
:param image: PIL Image to which the strip will be added. | |
:param binary_vector: Binary vector of length 512 representing the strip. | |
:param strip_width: Width of the strip to be added. | |
:param one_color: Color for "1" pixels (default: red). | |
:param zero_color: Color for "0" pixels (default: white). | |
:return: New image with the binary strip added on the right side. | |
""" | |
one_color = PIL.ImageColor.getrgb(one_color) | |
zero_color = PIL.ImageColor.getrgb(zero_color) | |
height = image.height | |
if len(binary_vector) != height: | |
raise ValueError("Binary vector must be of length 512") | |
# Create a new strip with the specified width and 512 height | |
strip = PIL.Image.new("RGB", (strip_width, height)) | |
# Fill the strip based on the binary vector | |
pixels = strip.load() | |
for i in range(height): | |
color = one_color if binary_vector[i] == 1 else zero_color | |
for w in range(strip_width): | |
pixels[w, i] = color | |
# Combine the original image with the new strip | |
# new_image = PIL.Image.new("RGB", (image.width + strip_width, height)) | |
# new_image.paste(image, (0, 0)) | |
# new_image.paste(strip, (image.width, 0)) | |
new_image = image.copy() | |
new_image.paste(strip, (image.width - strip_width, 0)) | |
return new_image | |
def add_binary_strip_horizontally( | |
image, | |
binary_vector, | |
strip_height=15, | |
one_color="limegreen", | |
zero_color="gray", | |
): | |
""" | |
Add a binary strip to the top of an image. | |
:param image: PIL Image to which the strip will be added. | |
:param binary_vector: Binary vector of length 512 representing the strip. | |
:param strip_height: Height of the strip to be added. | |
:param one_color: Color for "1" pixels, accepts color names or hex (default: red). | |
:param zero_color: Color for "0" pixels, accepts color names or hex (default: white). | |
:return: New image with the binary strip added at the top. | |
""" | |
width = image.width | |
if len(binary_vector) != width: | |
raise ValueError("Binary vector must be of length 512") | |
# Convert colors to RGB tuples | |
one_color_rgb = PIL.ImageColor.getrgb(one_color) | |
zero_color_rgb = PIL.ImageColor.getrgb(zero_color) | |
# Create a new strip with the specified height and 512 width | |
strip = PIL.Image.new("RGB", (width, strip_height)) | |
# Fill the strip based on the binary vector | |
pixels = strip.load() | |
for i in range(width): | |
color = one_color_rgb if binary_vector[i] == 1 else zero_color_rgb | |
for h in range(strip_height): | |
pixels[i, h] = color | |
# Combine the original image with the new strip | |
# new_image = PIL.Image.new("RGB", (width, image.height + strip_height)) | |
# new_image.paste(strip, (0, 0)) | |
# new_image.paste(image, (0, strip_height)) | |
new_image = image.copy() | |
new_image.paste(strip, (0, 0)) | |
return new_image | |
# Define a function to increase font sizes for a specific plot | |
def increase_font_sizes(ax, font_scale=1.6): | |
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] + | |
ax.get_xticklabels() + ax.get_yticklabels()): | |
item.set_fontsize(item.get_fontsize() * font_scale) | |
def cut_fraction_of_bbox(image, box, frac=0.7): | |
""" | |
Cuts the image such that the box occupies a fraction of the image. | |
""" | |
W, H = image.size | |
x1, y1, x2, y2 = box | |
w = x2 - x1 | |
h = y2 - y1 | |
new_w = int(w / frac) | |
new_h = int(h / frac) | |
x1_new = max(0, x1 - (new_w - w) // 2) | |
x2_new = min(W, x2 + (new_w - w) // 2) | |
y1_new = max(0, y1 - (new_h - h) // 2) | |
y2_new = min(H, y2 + (new_h - h) // 2) | |
return image.crop((x1_new, y1_new, x2_new, y2_new)) | |