Spaces:
Running
Running
File size: 6,396 Bytes
884e760 6c74fa1 2d8c11a 6c74fa1 6a1229b 2d8c11a ca9ec31 2d8c11a 6a1229b c52d0f0 2d8c11a 9ade37d 2d8c11a 6c74fa1 c52d0f0 6c74fa1 18fa5fa 6c74fa1 2d8c11a 6a1229b 1ae4124 c52d0f0 6a1229b 2d8c11a 6c74fa1 dcbf369 47009ed c0ddebd 47009ed 1318a4b eaaba91 1318a4b eaaba91 1318a4b dcbf369 6c74fa1 fd27637 6c74fa1 dfffe23 fd27637 dfffe23 0e5b8cf c3bac7e 6c74fa1 2d8c11a 46c6241 2d8c11a c0ddebd 601d127 2d8c11a eaaba91 2d8c11a c52d0f0 2d8c11a 6c74fa1 4aee494 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
import gradio as gr
import numpy as np
import os
from PIL import Image
import requests
from io import BytesIO
import io
import base64
hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private
auth_headers = {"api_token": hf_token}
def convert_mask_image_to_base64_string(mask_image):
buffer = io.BytesIO()
mask_image.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG")
# Encode the buffer in base64
image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url
def download_image(url):
response = requests.get(url)
return Image.open(BytesIO(response.content)).convert("RGB")
def eraser_api_call(image_base64_file, mask_base64_file, mask_type):
url = "http://engine.prod.bria-api.com/v1/eraser"
payload = {
"file": image_base64_file,
"mask_file": mask_base64_file,
"mask_type": mask_type,
}
response = requests.post(url, json=payload, headers=auth_headers)
response = response.json()
res_image = download_image(response["result_url"])
return res_image
def predict(dict):
init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
image_base64_file = convert_mask_image_to_base64_string(init_image)
mask_base64_file = convert_mask_image_to_base64_string(mask)
mask_type = "manual"
gen_img = eraser_api_call(image_base64_file, mask_base64_file, mask_type)
return gen_img
css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button {
width: 100%;
height: 50px; /* Set a fixed height for the button */
display: flex;
align-items: center;
justify-content: center;
}
#output-img img, #image_upload img {
object-fit: contain; /* Ensure aspect ratio is preserved */
width: 100%;
height: auto; /* Let height adjust automatically */
}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''
image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("## BRIA Eraser API")
gr.HTML('''
<p style="margin-bottom: 10px; font-size: 94%">
This demo showcases the BRIA Eraser capability, which allows users to remove specific elements or objects from images.<br>
The pipeline comprises multiple components, including <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">briaai/BRIA-2.3</a>,
<a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting" target="_blank">briaai/BRIA-2.3-ControlNet-Inpainting</a>,
and <a href="https://huggingface.co/briaai/BRIA-2.3-FAST-LORA" target="_blank">briaai/BRIA-2.3-FAST-LORA</a>, all trained on licensed data.<br>
This ensures full legal liability coverage for copyright and privacy infringement.<br>
Notes:<br>
- High-resolution images may take longer to process.<br>
- For multiple masks, results are better if all masks are included in inference.<br>
</p>
''')
with gr.Row():
with gr.Column():
image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[],
brush=gr.Brush(colors=["#000000"], color_mode="fixed"),
)
with gr.Row(elem_id="prompt-container", equal_height=True):
with gr.Column(): # Wrap the button inside a Column
btn = gr.Button("Erase!", elem_id="run_button")
with gr.Column():
image_out = gr.Image(label="Output", elem_id="output-img")
# Button click will trigger the inpainting function (no prompt required)
btn.click(fn=predict, inputs=[image], outputs=[image_out], api_name='run')
gr.HTML(
"""
<div class="footer">
<p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
</p>
</div>
"""
)
image_blocks.queue(max_size=25,api_open=False).launch(show_api=False) |