File size: 6,396 Bytes
884e760
6c74fa1
2d8c11a
6c74fa1
6a1229b
 
 
2d8c11a
 
 
ca9ec31
2d8c11a
 
 
 
 
 
 
 
 
 
 
 
6a1229b
c52d0f0
2d8c11a
9ade37d
2d8c11a
 
 
 
 
 
 
 
 
 
 
6c74fa1
 
c52d0f0
6c74fa1
18fa5fa
 
6c74fa1
2d8c11a
 
6a1229b
1ae4124
c52d0f0
6a1229b
2d8c11a
6c74fa1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcbf369
47009ed
 
c0ddebd
 
 
 
47009ed
1318a4b
eaaba91
1318a4b
eaaba91
1318a4b
dcbf369
 
6c74fa1
 
 
 
 
 
fd27637
6c74fa1
 
dfffe23
fd27637
 
dfffe23
0e5b8cf
c3bac7e
 
 
6c74fa1
 
 
2d8c11a
46c6241
 
 
2d8c11a
c0ddebd
601d127
2d8c11a
 
eaaba91
2d8c11a
 
c52d0f0
2d8c11a
6c74fa1
 
 
 
 
 
 
 
 
 
4aee494
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import gradio as gr
import numpy as np

import os
from PIL import Image
import requests
from io import BytesIO
import io
import base64

hf_token = os.environ.get("HF_TOKEN_API_DEMO") # we get it from a secret env variable, such that it's private
auth_headers = {"api_token": hf_token}

def convert_mask_image_to_base64_string(mask_image):
    buffer = io.BytesIO()
    mask_image.save(buffer, format="PNG")  # You can choose the format (e.g., "JPEG", "PNG")
    # Encode the buffer in base64
    image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
    return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url

def download_image(url):
    response = requests.get(url)
    return Image.open(BytesIO(response.content)).convert("RGB")

def eraser_api_call(image_base64_file, mask_base64_file, mask_type):

    url = "http://engine.prod.bria-api.com/v1/eraser"
    
    payload = {
    "file": image_base64_file,
    "mask_file": mask_base64_file,
    "mask_type": mask_type,
    }
    response = requests.post(url, json=payload, headers=auth_headers)
    response = response.json()
    res_image = download_image(response["result_url"])
    
    return res_image


def predict(dict):

    init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
    mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
    
    image_base64_file = convert_mask_image_to_base64_string(init_image)
    mask_base64_file = convert_mask_image_to_base64_string(mask)
    
    mask_type = "manual"
    gen_img = eraser_api_call(image_base64_file, mask_base64_file, mask_type)
    
    return gen_img


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button {
    width: 100%;
    height: 50px;  /* Set a fixed height for the button */
    display: flex;
    align-items: center;
    justify-content: center;
}
#output-img img, #image_upload img {
    object-fit: contain; /* Ensure aspect ratio is preserved */
    width: 100%;
    height: auto; /* Let height adjust automatically */
}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("## BRIA Eraser API")
        gr.HTML('''
          <p style="margin-bottom: 10px; font-size: 94%">
            This demo showcases the BRIA Eraser capability, which allows users to remove specific elements or objects from images.<br>
            The pipeline comprises multiple components, including <a href="https://huggingface.co/briaai/BRIA-2.3" target="_blank">briaai/BRIA-2.3</a>, 
            <a href="https://huggingface.co/briaai/BRIA-2.3-ControlNet-Inpainting" target="_blank">briaai/BRIA-2.3-ControlNet-Inpainting</a>, 
            and <a href="https://huggingface.co/briaai/BRIA-2.3-FAST-LORA" target="_blank">briaai/BRIA-2.3-FAST-LORA</a>, all trained on licensed data.<br>
            This ensures full legal liability coverage for copyright and privacy infringement.<br>
            Notes:<br>
            - High-resolution images may take longer to process.<br>
            - For multiple masks, results are better if all masks are included in inference.<br>
          </p>
        ''')
    with gr.Row():
        with gr.Column():
            image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], 
                                   brush=gr.Brush(colors=["#000000"], color_mode="fixed"),
                                   )
            with gr.Row(elem_id="prompt-container", equal_height=True):
                with gr.Column():  # Wrap the button inside a Column
                    btn = gr.Button("Erase!", elem_id="run_button")
        
        with gr.Column():
            image_out = gr.Image(label="Output", elem_id="output-img")

    # Button click will trigger the inpainting function (no prompt required)
    btn.click(fn=predict, inputs=[image], outputs=[image_out], api_name='run')
    

    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)