ankigen / app.py
brickfrog's picture
Upload folder using huggingface_hub
75775c4 verified
from openai import OpenAI
from pydantic import BaseModel
from typing import List, Optional
import gradio as gr
import os
import logging
from logging.handlers import RotatingFileHandler
import sys
from functools import lru_cache
from tenacity import retry, stop_after_attempt, wait_exponential, retry_if_exception_type
import hashlib
import genanki
import random
import json
import tempfile
from pathlib import Path
import pandas as pd
class Step(BaseModel):
explanation: str
output: str
class Subtopics(BaseModel):
steps: List[Step]
result: List[str]
class Topics(BaseModel):
result: List[Subtopics]
class CardFront(BaseModel):
question: Optional[str] = None
class CardBack(BaseModel):
answer: Optional[str] = None
explanation: str
example: str
class Card(BaseModel):
front: CardFront
back: CardBack
metadata: Optional[dict] = None
class CardList(BaseModel):
topic: str
cards: List[Card]
class ConceptBreakdown(BaseModel):
main_concept: str
prerequisites: List[str]
learning_outcomes: List[str]
common_misconceptions: List[str]
difficulty_level: str # "beginner", "intermediate", "advanced"
class CardGeneration(BaseModel):
concept: str
thought_process: str
verification_steps: List[str]
card: Card
class LearningSequence(BaseModel):
topic: str
concepts: List[ConceptBreakdown]
cards: List[CardGeneration]
suggested_study_order: List[str]
review_recommendations: List[str]
def setup_logging():
"""Configure logging to both file and console"""
logger = logging.getLogger('ankigen')
logger.setLevel(logging.DEBUG)
# Create formatters
detailed_formatter = logging.Formatter(
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
simple_formatter = logging.Formatter(
'%(levelname)s: %(message)s'
)
# File handler (detailed logging)
file_handler = RotatingFileHandler(
'ankigen.log',
maxBytes=1024*1024, # 1MB
backupCount=5
)
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(detailed_formatter)
# Console handler (info and above)
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.INFO)
console_handler.setFormatter(simple_formatter)
# Add handlers to logger
logger.addHandler(file_handler)
logger.addHandler(console_handler)
return logger
# Initialize logger
logger = setup_logging()
# Replace the caching implementation with a proper cache dictionary
_response_cache = {} # Global cache dictionary
@lru_cache(maxsize=100)
def get_cached_response(cache_key: str):
"""Get response from cache"""
return _response_cache.get(cache_key)
def set_cached_response(cache_key: str, response):
"""Set response in cache"""
_response_cache[cache_key] = response
def create_cache_key(prompt: str, model: str) -> str:
"""Create a unique cache key for the API request"""
return hashlib.md5(f"{model}:{prompt}".encode()).hexdigest()
# Add retry decorator for API calls
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
retry=retry_if_exception_type(Exception),
before_sleep=lambda retry_state: logger.warning(
f"Retrying API call (attempt {retry_state.attempt_number})"
)
)
def structured_output_completion(
client, model, response_format, system_prompt, user_prompt
):
"""Make API call with retry logic and caching"""
cache_key = create_cache_key(f"{system_prompt}:{user_prompt}", model)
cached_response = get_cached_response(cache_key)
if cached_response is not None:
logger.info("Using cached response")
return cached_response
try:
logger.debug(f"Making API call with model {model}")
# Add JSON instruction to system prompt
system_prompt = f"{system_prompt}\nProvide your response as a JSON object matching the specified schema."
completion = client.chat.completions.create(
model=model,
messages=[
{"role": "system", "content": system_prompt.strip()},
{"role": "user", "content": user_prompt.strip()},
],
response_format={"type": "json_object"},
temperature=0.7
)
if not hasattr(completion, "choices") or not completion.choices:
logger.warning("No choices returned in the completion.")
return None
first_choice = completion.choices[0]
if not hasattr(first_choice, "message"):
logger.warning("No message found in the first choice.")
return None
# Parse the JSON response
result = json.loads(first_choice.message.content)
# Cache the successful response
set_cached_response(cache_key, result)
return result
except Exception as e:
logger.error(f"API call failed: {str(e)}", exc_info=True)
raise
def generate_cards_batch(
client,
model,
topic,
num_cards,
system_prompt,
batch_size=3
):
"""Generate a batch of cards for a topic"""
cards_prompt = f"""
Generate {num_cards} flashcards for the topic: {topic}
Return your response as a JSON object with the following structure:
{{
"cards": [
{{
"front": {{
"question": "question text"
}},
"back": {{
"answer": "concise answer",
"explanation": "detailed explanation",
"example": "practical example"
}},
"metadata": {{
"prerequisites": ["list", "of", "prerequisites"],
"learning_outcomes": ["list", "of", "outcomes"],
"misconceptions": ["list", "of", "misconceptions"],
"difficulty": "beginner/intermediate/advanced"
}}
}}
]
}}
"""
try:
logger.info(f"Generated learning sequence for {topic}")
response = structured_output_completion(
client,
model,
{"type": "json_object"},
system_prompt,
cards_prompt
)
if not response or "cards" not in response:
logger.error("Invalid cards response format")
raise ValueError("Failed to generate cards. Please try again.")
# Convert the JSON response into Card objects
cards = []
for card_data in response["cards"]:
card = Card(
front=CardFront(**card_data["front"]),
back=CardBack(**card_data["back"]),
metadata=card_data.get("metadata", {})
)
cards.append(card)
return cards
except Exception as e:
logger.error(f"Failed to generate cards batch: {str(e)}")
raise
# Add near the top with other constants
AVAILABLE_MODELS = [
{
"value": "gpt-4o-mini", # Default model
"label": "gpt-4o Mini (Fastest)",
"description": "Balanced speed and quality"
},
{
"value": "gpt-4o",
"label": "gpt-4o (Better Quality)",
"description": "Higher quality, slower generation"
},
{
"value": "o1",
"label": "o1 (Best Quality)",
"description": "Highest quality, longest generation time"
}
]
GENERATION_MODES = [
{
"value": "subject",
"label": "Single Subject",
"description": "Generate cards for a specific topic"
},
{
"value": "path",
"label": "Learning Path",
"description": "Break down a job description or learning goal into subjects"
}
]
def generate_cards(
api_key_input,
subject,
model_name="gpt-4o-mini",
topic_number=1,
cards_per_topic=2,
preference_prompt="assume I'm a beginner",
):
logger.info(f"Starting card generation for subject: {subject}")
logger.debug(f"Parameters: topics={topic_number}, cards_per_topic={cards_per_topic}")
# Input validation
if not api_key_input:
logger.warning("No API key provided")
raise gr.Error("OpenAI API key is required")
if not api_key_input.startswith("sk-"):
logger.warning("Invalid API key format")
raise gr.Error("Invalid API key format. OpenAI keys should start with 'sk-'")
if not subject.strip():
logger.warning("No subject provided")
raise gr.Error("Subject is required")
gr.Info("🚀 Starting card generation...")
try:
logger.debug("Initializing OpenAI client")
client = OpenAI(api_key=api_key_input)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
model = model_name
flattened_data = []
total = 0
progress_tracker = gr.Progress(track_tqdm=True)
system_prompt = f"""
You are an expert educator in {subject}, creating an optimized learning sequence.
Your goal is to:
1. Break down the subject into logical concepts
2. Identify prerequisites and learning outcomes
3. Generate cards that build upon each other
4. Address and correct common misconceptions
5. Include verification steps to minimize hallucinations
6. Provide a recommended study order
For explanations and examples:
- Keep explanations in plain text
- Format code examples with triple backticks (```)
- Separate conceptual examples from code examples
- Use clear, concise language
Keep in mind the user's preferences: {preference_prompt}
"""
topic_prompt = f"""
Generate the top {topic_number} important subjects to know about {subject} in
order of ascending difficulty. Return your response as a JSON object with the following structure:
{{
"topics": [
{{
"name": "topic name",
"difficulty": "beginner/intermediate/advanced",
"description": "brief description"
}}
]
}}
"""
try:
logger.info("Generating topics...")
topics_response = structured_output_completion(
client,
model,
{"type": "json_object"},
system_prompt,
topic_prompt
)
if not topics_response or "topics" not in topics_response:
logger.error("Invalid topics response format")
raise gr.Error("Failed to generate topics. Please try again.")
topics = topics_response["topics"]
gr.Info(f"✨ Generated {len(topics)} topics successfully!")
# Generate cards for each topic
for i, topic in enumerate(progress_tracker.tqdm(topics, desc="Generating cards")):
progress_html = f"""
<div style="text-align: center">
<p>Generating cards for topic {i+1}/{len(topics)}: {topic["name"]}</p>
<p>Cards generated so far: {total}</p>
</div>
"""
try:
cards = generate_cards_batch(
client,
model,
topic["name"],
cards_per_topic,
system_prompt,
batch_size=3
)
if cards:
for card_index, card in enumerate(cards, start=1):
index = f"{i+1}.{card_index}"
metadata = card.metadata or {}
row = [
index,
topic["name"],
card.front.question,
card.back.answer,
card.back.explanation,
card.back.example,
metadata.get("prerequisites", []),
metadata.get("learning_outcomes", []),
metadata.get("misconceptions", []),
metadata.get("difficulty", "beginner")
]
flattened_data.append(row)
total += 1
gr.Info(f"✅ Generated {len(cards)} cards for {topic['name']}")
except Exception as e:
logger.error(f"Failed to generate cards for topic {topic['name']}: {str(e)}")
gr.Warning(f"Failed to generate cards for '{topic['name']}'")
continue
final_html = f"""
<div style="text-align: center">
<p>✅ Generation complete!</p>
<p>Total cards generated: {total}</p>
</div>
"""
# Convert to DataFrame with all columns
df = pd.DataFrame(
flattened_data,
columns=[
"Index",
"Topic",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty"
]
)
return df, final_html, total
except Exception as e:
logger.error(f"Card generation failed: {str(e)}", exc_info=True)
raise gr.Error(f"Card generation failed: {str(e)}")
# Update the BASIC_MODEL definition with enhanced CSS/HTML
BASIC_MODEL = genanki.Model(
random.randrange(1 << 30, 1 << 31),
'AnkiGen Enhanced',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
{'name': 'Explanation'},
{'name': 'Example'},
{'name': 'Prerequisites'},
{'name': 'Learning_Outcomes'},
{'name': 'Common_Misconceptions'},
{'name': 'Difficulty'}
],
templates=[{
'name': 'Card 1',
'qfmt': '''
<div class="card question-side">
<div class="difficulty-indicator {{Difficulty}}"></div>
<div class="content">
<div class="question">{{Question}}</div>
<div class="prerequisites" onclick="event.stopPropagation();">
<div class="prerequisites-toggle">Show Prerequisites</div>
<div class="prerequisites-content">{{Prerequisites}}</div>
</div>
</div>
</div>
<script>
document.querySelector('.prerequisites-toggle').addEventListener('click', function(e) {
e.stopPropagation();
this.parentElement.classList.toggle('show');
});
</script>
''',
'afmt': '''
<div class="card answer-side">
<div class="content">
<div class="question-section">
<div class="question">{{Question}}</div>
<div class="prerequisites">
<strong>Prerequisites:</strong> {{Prerequisites}}
</div>
</div>
<hr>
<div class="answer-section">
<h3>Answer</h3>
<div class="answer">{{Answer}}</div>
</div>
<div class="explanation-section">
<h3>Explanation</h3>
<div class="explanation-text">{{Explanation}}</div>
</div>
<div class="example-section">
<h3>Example</h3>
<div class="example-text"></div>
<pre><code>{{Example}}</code></pre>
</div>
<div class="metadata-section">
<div class="learning-outcomes">
<h3>Learning Outcomes</h3>
<div>{{Learning_Outcomes}}</div>
</div>
<div class="misconceptions">
<h3>Common Misconceptions - Debunked</h3>
<div>{{Common_Misconceptions}}</div>
</div>
<div class="difficulty">
<h3>Difficulty Level</h3>
<div>{{Difficulty}}</div>
</div>
</div>
</div>
</div>
''',
}],
css='''
/* Base styles */
.card {
font-family: 'Inter', system-ui, -apple-system, sans-serif;
font-size: 16px;
line-height: 1.6;
color: #1a1a1a;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background: #ffffff;
}
@media (max-width: 768px) {
.card {
font-size: 14px;
padding: 15px;
}
}
/* Question side */
.question-side {
position: relative;
min-height: 200px;
}
.difficulty-indicator {
position: absolute;
top: 10px;
right: 10px;
width: 10px;
height: 10px;
border-radius: 50%;
}
.difficulty-indicator.beginner { background: #4ade80; }
.difficulty-indicator.intermediate { background: #fbbf24; }
.difficulty-indicator.advanced { background: #ef4444; }
.question {
font-size: 1.3em;
font-weight: 600;
color: #2563eb;
margin-bottom: 1.5em;
}
.prerequisites {
margin-top: 1em;
font-size: 0.9em;
color: #666;
}
.prerequisites-toggle {
color: #2563eb;
cursor: pointer;
text-decoration: underline;
}
.prerequisites-content {
display: none;
margin-top: 0.5em;
padding: 0.5em;
background: #f8fafc;
border-radius: 4px;
}
.prerequisites.show .prerequisites-content {
display: block;
}
/* Answer side */
.answer-section,
.explanation-section,
.example-section {
margin: 1.5em 0;
padding: 1.2em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.answer-section {
background: #f0f9ff;
border-left: 4px solid #2563eb;
}
.explanation-section {
background: #f0fdf4;
border-left: 4px solid #4ade80;
}
.example-section {
background: #fff7ed;
border-left: 4px solid #f97316;
}
/* Code blocks */
pre code {
display: block;
padding: 1em;
background: #1e293b;
color: #e2e8f0;
border-radius: 6px;
overflow-x: auto;
font-family: 'Fira Code', 'Consolas', monospace;
font-size: 0.9em;
}
/* Metadata tabs */
.metadata-tabs {
margin-top: 2em;
border: 1px solid #e5e7eb;
border-radius: 8px;
overflow: hidden;
}
.tab-buttons {
display: flex;
background: #f8fafc;
border-bottom: 1px solid #e5e7eb;
}
.tab-btn {
flex: 1;
padding: 0.8em;
border: none;
background: none;
cursor: pointer;
font-weight: 500;
color: #64748b;
transition: all 0.2s;
}
.tab-btn:hover {
background: #f1f5f9;
}
.tab-btn.active {
color: #2563eb;
background: #fff;
border-bottom: 2px solid #2563eb;
}
.tab-content {
display: none;
padding: 1.2em;
}
.tab-content.active {
display: block;
}
/* Responsive design */
@media (max-width: 640px) {
.tab-buttons {
flex-direction: column;
}
.tab-btn {
width: 100%;
text-align: left;
padding: 0.6em;
}
.answer-section,
.explanation-section,
.example-section {
padding: 1em;
margin: 1em 0;
}
}
/* Animations */
@keyframes fadeIn {
from { opacity: 0; }
to { opacity: 1; }
}
.card {
animation: fadeIn 0.3s ease-in-out;
}
.tab-content.active {
animation: fadeIn 0.2s ease-in-out;
}
'''
)
# Split the export functions
def export_csv(data):
"""Export the generated cards as a CSV file"""
if data is None:
raise gr.Error("No data to export. Please generate cards first.")
if len(data) < 2: # Minimum 2 cards
raise gr.Error("Need at least 2 cards to export.")
try:
gr.Info("💾 Exporting to CSV...")
csv_path = "anki_cards.csv"
data.to_csv(csv_path, index=False)
gr.Info("✅ CSV export complete!")
return gr.File(value=csv_path, visible=True)
except Exception as e:
logger.error(f"Failed to export CSV: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to export CSV: {str(e)}")
def export_deck(data, subject):
"""Export the generated cards as an Anki deck with pedagogical metadata"""
if data is None:
raise gr.Error("No data to export. Please generate cards first.")
if len(data) < 2: # Minimum 2 cards
raise gr.Error("Need at least 2 cards to export.")
try:
gr.Info("💾 Creating Anki deck...")
deck_id = random.randrange(1 << 30, 1 << 31)
deck = genanki.Deck(deck_id, f"AnkiGen - {subject}")
records = data.to_dict('records')
# Update the model to include metadata fields
global BASIC_MODEL
BASIC_MODEL = genanki.Model(
random.randrange(1 << 30, 1 << 31),
'AnkiGen Enhanced',
fields=[
{'name': 'Question'},
{'name': 'Answer'},
{'name': 'Explanation'},
{'name': 'Example'},
{'name': 'Prerequisites'},
{'name': 'Learning_Outcomes'},
{'name': 'Common_Misconceptions'},
{'name': 'Difficulty'}
],
templates=[{
'name': 'Card 1',
'qfmt': '''
<div class="card question">
<div class="content">{{Question}}</div>
<div class="prerequisites">Prerequisites: {{Prerequisites}}</div>
</div>
''',
'afmt': '''
<div class="card answer">
<div class="question">{{Question}}</div>
<hr>
<div class="content">
<div class="answer-section">
<h3>Answer:</h3>
<div>{{Answer}}</div>
</div>
<div class="explanation-section">
<h3>Explanation:</h3>
<div>{{Explanation}}</div>
</div>
<div class="example-section">
<h3>Example:</h3>
<pre><code>{{Example}}</code></pre>
</div>
<div class="metadata-section">
<h3>Prerequisites:</h3>
<div>{{Prerequisites}}</div>
<h3>Learning Outcomes:</h3>
<div>{{Learning_Outcomes}}</div>
<h3>Watch out for:</h3>
<div>{{Common_Misconceptions}}</div>
<h3>Difficulty Level:</h3>
<div>{{Difficulty}}</div>
</div>
</div>
</div>
'''
}],
css='''
.card {
font-family: 'Inter', system-ui, -apple-system, sans-serif;
font-size: 16px;
line-height: 1.6;
color: #1a1a1a;
max-width: 800px;
margin: 0 auto;
padding: 20px;
background: #ffffff;
}
.question {
font-size: 1.3em;
font-weight: 600;
color: #2563eb;
margin-bottom: 1.5em;
}
.prerequisites {
font-size: 0.9em;
color: #666;
margin-top: 1em;
font-style: italic;
}
.answer-section,
.explanation-section,
.example-section {
margin: 1.5em 0;
padding: 1.2em;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
}
.answer-section {
background: #f0f9ff;
border-left: 4px solid #2563eb;
}
.explanation-section {
background: #f0fdf4;
border-left: 4px solid #4ade80;
}
.example-section {
background: #fff7ed;
border-left: 4px solid #f97316;
}
.metadata-section {
background: #f8f9fa;
padding: 1em;
border-radius: 6px;
margin: 1em 0;
}
pre code {
display: block;
padding: 1em;
background: #1e293b;
color: #e2e8f0;
border-radius: 6px;
overflow-x: auto;
font-family: 'Fira Code', 'Consolas', monospace;
font-size: 0.9em;
}
'''
)
# Add notes to the deck
for record in records:
note = genanki.Note(
model=BASIC_MODEL,
fields=[
str(record['Question']),
str(record['Answer']),
str(record['Explanation']),
str(record['Example']),
str(record['Prerequisites']),
str(record['Learning_Outcomes']),
str(record['Common_Misconceptions']),
str(record['Difficulty'])
]
)
deck.add_note(note)
# Create a temporary directory for the package
with tempfile.TemporaryDirectory() as temp_dir:
output_path = Path(temp_dir) / "anki_deck.apkg"
package = genanki.Package(deck)
package.write_to_file(output_path)
# Copy to a more permanent location
final_path = "anki_deck.apkg"
with open(output_path, 'rb') as src, open(final_path, 'wb') as dst:
dst.write(src.read())
gr.Info("✅ Anki deck export complete!")
return gr.File(value=final_path, visible=True)
except Exception as e:
logger.error(f"Failed to export Anki deck: {str(e)}", exc_info=True)
raise gr.Error(f"Failed to export Anki deck: {str(e)}")
# Add this near the top where we define our CSS
js_storage = """
async () => {
// Load decks from localStorage
const loadDecks = () => {
const decks = localStorage.getItem('ankigen_decks');
return decks ? JSON.parse(decks) : [];
};
// Save decks to localStorage
const saveDecks = (decks) => {
localStorage.setItem('ankigen_decks', JSON.stringify(decks));
};
// Add methods to window for Gradio to access
window.loadStoredDecks = loadDecks;
window.saveStoredDecks = saveDecks;
// Initial load
return loadDecks();
}
"""
# Create a custom theme
custom_theme = gr.themes.Soft().set(
body_background_fill="*background_fill_secondary",
block_background_fill="*background_fill_primary",
block_border_width="0",
button_primary_background_fill="*primary_500",
button_primary_text_color="white",
)
def analyze_learning_path(api_key, description, model):
"""Analyze a job description or learning goal to create a structured learning path"""
try:
client = OpenAI(api_key=api_key)
except Exception as e:
logger.error(f"Failed to initialize OpenAI client: {str(e)}")
raise gr.Error(f"Failed to initialize OpenAI client: {str(e)}")
system_prompt = """You are an expert curriculum designer and educational consultant.
Your task is to analyze learning goals and create structured, achievable learning paths.
Break down complex topics into manageable subjects, identify prerequisites,
and suggest practical projects that reinforce learning.
Focus on creating a logical progression that builds upon previous knowledge."""
path_prompt = f"""
Analyze this description and create a structured learning path.
Return your analysis as a JSON object with the following structure:
{{
"subjects": [
{{
"Subject": "name of the subject",
"Prerequisites": "required prior knowledge",
"Time Estimate": "estimated time to learn"
}}
],
"learning_order": "recommended sequence of study",
"projects": "suggested practical projects"
}}
Description to analyze:
{description}
"""
try:
response = structured_output_completion(
client,
model,
{"type": "json_object"},
system_prompt,
path_prompt
)
# Format the response for the UI
subjects_df = pd.DataFrame(response["subjects"])
learning_order_text = f"### Recommended Learning Order\n{response['learning_order']}"
projects_text = f"### Suggested Projects\n{response['projects']}"
return subjects_df, learning_order_text, projects_text
except Exception as e:
logger.error(f"Failed to analyze learning path: {str(e)}")
raise gr.Error(f"Failed to analyze learning path: {str(e)}")
with gr.Blocks(
theme=custom_theme,
title="AnkiGen",
css="""
#footer {display:none !important}
.tall-dataframe {height: 800px !important}
.contain {max-width: 1200px; margin: auto;}
.output-cards {border-radius: 8px; box-shadow: 0 4px 6px -1px rgba(0,0,0,0.1);}
.hint-text {font-size: 0.9em; color: #666; margin-top: 4px;}
""",
js=js_storage, # Add the JavaScript
) as ankigen:
with gr.Column(elem_classes="contain"):
gr.Markdown("# 📚 AnkiGen - Advanced Anki Card Generator")
gr.Markdown("""
#### Generate comprehensive Anki flashcards using AI.
""")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### Configuration")
# Add mode selection
generation_mode = gr.Radio(
choices=[
"subject",
"path"
],
value="subject",
label="Generation Mode",
info="Choose how you want to generate content"
)
# Create containers for different modes
with gr.Group() as subject_mode:
subject = gr.Textbox(
label="Subject",
placeholder="Enter the subject, e.g., 'Basic SQL Concepts'",
info="The topic you want to generate flashcards for"
)
with gr.Group(visible=False) as path_mode:
description = gr.Textbox(
label="Learning Goal",
placeholder="Paste a job description or describe what you want to learn...",
info="We'll break this down into learnable subjects",
lines=5
)
analyze_button = gr.Button("Analyze & Break Down", variant="secondary")
# Common settings
api_key_input = gr.Textbox(
label="OpenAI API Key",
type="password",
placeholder="Enter your OpenAI API key",
value=os.getenv("OPENAI_API_KEY", ""),
info="Your OpenAI API key starting with 'sk-'"
)
# Generation Button
generate_button = gr.Button("Generate Cards", variant="primary")
# Advanced Settings in Accordion
with gr.Accordion("Advanced Settings", open=False):
model_choice = gr.Dropdown(
choices=[
"gpt-4o-mini",
"gpt-4o",
"o1"
],
value="gpt-4o-mini",
label="Model Selection",
info="Select the AI model to use for generation"
)
# Add tooltip/description for models
model_info = gr.Markdown("""
**Model Information:**
- **gpt-4o-mini**: Fastest option, good for most use cases
- **gpt-4o**: Better quality, takes longer to generate
- **o1**: Highest quality, longest generation time
""")
topic_number = gr.Slider(
label="Number of Topics",
minimum=2,
maximum=20,
step=1,
value=2,
info="How many distinct topics to cover within the subject",
)
cards_per_topic = gr.Slider(
label="Cards per Topic",
minimum=2,
maximum=30,
step=1,
value=3,
info="How many flashcards to generate for each topic",
)
preference_prompt = gr.Textbox(
label="Learning Preferences",
placeholder="e.g., 'Assume I'm a beginner' or 'Focus on practical examples'",
info="Customize how the content is presented",
lines=3,
)
# Right column - add a new container for learning path results
with gr.Column(scale=2):
with gr.Group(visible=False) as path_results:
gr.Markdown("### Learning Path Analysis")
subjects_list = gr.Dataframe(
headers=["Subject", "Prerequisites", "Time Estimate"],
label="Recommended Subjects",
interactive=False
)
learning_order = gr.Markdown("### Recommended Learning Order")
projects = gr.Markdown("### Suggested Projects")
# Replace generate_selected with use_subjects
use_subjects = gr.Button(
"Use These Subjects ℹ️", # Added info emoji to button text
variant="primary"
)
gr.Markdown(
"*Click to copy subjects to main input for card generation*",
elem_classes="hint-text"
)
# Existing output components
with gr.Group() as cards_output:
gr.Markdown("### Generated Cards")
# Output Format Documentation
with gr.Accordion("Output Format", open=True):
gr.Markdown("""
The generated cards include:
* **Index**: Unique identifier for each card
* **Topic**: The specific subtopic within your subject
* **Question**: Clear, focused question for the flashcard front
* **Answer**: Concise core answer
* **Explanation**: Detailed conceptual explanation
* **Example**: Practical implementation or code example
* **Prerequisites**: Required knowledge for this concept
* **Learning Outcomes**: What you should understand after mastering this card
* **Common Misconceptions**: Incorrect assumptions debunked with explanations
* **Difficulty**: Concept complexity level for optimal study sequencing
Export options:
- **CSV**: Raw data for custom processing
- **Anki Deck**: Ready-to-use deck with formatted cards and metadata
""")
# Add near the output format documentation
with gr.Accordion("Example Card Format", open=False):
gr.Code(
label="Example Card",
value='''
{
"front": {
"question": "What is a PRIMARY KEY constraint in SQL?"
},
"back": {
"answer": "A PRIMARY KEY constraint uniquely identifies each record in a table",
"explanation": "A primary key serves as a unique identifier for each row in a database table. It enforces data integrity by ensuring that:\n1. Each value is unique\n2. No null values are allowed\n3. The value remains stable over time\n\nThis is fundamental for:\n- Establishing relationships between tables\n- Maintaining data consistency\n- Efficient data retrieval",
"example": "-- Creating a table with a primary key\nCREATE TABLE Users (\n user_id INT PRIMARY KEY,\n username VARCHAR(50) NOT NULL,\n email VARCHAR(100) UNIQUE\n);"
},
"metadata": {
"prerequisites": ["Basic SQL table concepts", "Understanding of data types"],
"learning_outcomes": ["Understand the purpose and importance of primary keys", "Know how to create and use primary keys"],
"common_misconceptions": [
"❌ Misconception: Primary keys must always be single columns\n✓ Reality: Primary keys can be composite (multiple columns)",
"❌ Misconception: Primary keys must be integers\n✓ Reality: Any data type that ensures uniqueness can be used"
],
"difficulty": "beginner"
}
}
''',
language="json"
)
# Dataframe Output
output = gr.Dataframe(
headers=[
"Index",
"Topic",
"Question",
"Answer",
"Explanation",
"Example",
"Prerequisites",
"Learning_Outcomes",
"Common_Misconceptions",
"Difficulty"
],
interactive=True,
elem_classes="tall-dataframe",
wrap=True,
column_widths=[50, 100, 200, 200, 250, 200, 150, 150, 150, 100],
)
# Export Controls
with gr.Row():
with gr.Column():
gr.Markdown("### Export Options")
with gr.Row():
export_csv_button = gr.Button("Export to CSV", variant="secondary")
export_anki_button = gr.Button("Export to Anki Deck", variant="secondary")
download_csv = gr.File(label="Download CSV", interactive=False, visible=False)
download_anki = gr.File(label="Download Anki Deck", interactive=False, visible=False)
# Add near the top of the Blocks
with gr.Row():
progress = gr.HTML(visible=False)
total_cards = gr.Number(label="Total Cards Generated", value=0, visible=False)
# Add JavaScript to handle mode switching
def update_mode_visibility(mode):
"""Update component visibility based on selected mode and clear values"""
is_subject = (mode == "subject")
is_path = (mode == "path")
# Clear values when switching modes
if is_path:
subject.value = "" # Clear subject when switching to path mode
else:
description.value = "" # Clear description when switching to subject mode
return {
subject_mode: gr.update(visible=is_subject),
path_mode: gr.update(visible=is_path),
path_results: gr.update(visible=is_path),
cards_output: gr.update(visible=not is_path),
subject: gr.update(value="") if is_path else gr.update(),
description: gr.update(value="") if not is_path else gr.update(),
output: gr.update(value=None), # Clear previous output
progress: gr.update(value="", visible=False),
total_cards: gr.update(value=0, visible=False)
}
# Update the mode switching handler to include all components that need clearing
generation_mode.change(
fn=update_mode_visibility,
inputs=[generation_mode],
outputs=[
subject_mode,
path_mode,
path_results,
cards_output,
subject,
description,
output,
progress,
total_cards
]
)
# Add handler for path analysis
analyze_button.click(
fn=analyze_learning_path,
inputs=[api_key_input, description, model_choice],
outputs=[subjects_list, learning_order, projects]
)
# Add this function to handle copying subjects to main input
def use_selected_subjects(subjects_df, topic_number):
"""Copy selected subjects to main input and switch to subject mode"""
if subjects_df is None or subjects_df.empty:
raise gr.Error("No subjects available to copy")
# Get all subjects and join them
subjects = subjects_df["Subject"].tolist()
combined_subject = ", ".join(subjects)
# Calculate reasonable number of topics based on number of subjects
suggested_topics = min(len(subjects) + 2, 20) # Add 2 for related concepts, cap at 20
# Return updates for individual components instead of groups
return (
"subject", # generation_mode value
gr.update(visible=True), # subject textbox visibility
gr.update(visible=False), # description textbox visibility
gr.update(visible=False), # subjects_list visibility
gr.update(visible=False), # learning_order visibility
gr.update(visible=False), # projects visibility
gr.update(visible=True), # output visibility
combined_subject, # subject value
suggested_topics, # topic_number value
"Focus on connections between these subjects and their practical applications" # preference_prompt
)
# Update the click handler to match the new outputs
use_subjects.click(
fn=use_selected_subjects,
inputs=[subjects_list, topic_number],
outputs=[
generation_mode,
subject, # Individual components instead of groups
description,
subjects_list,
learning_order,
projects,
output,
subject,
topic_number,
preference_prompt
]
)
# Simplified event handlers
generate_button.click(
fn=generate_cards,
inputs=[
api_key_input,
subject,
model_choice, # Add model selection
topic_number,
cards_per_topic,
preference_prompt,
],
outputs=[output, progress, total_cards],
show_progress=True,
)
export_csv_button.click(
fn=export_csv,
inputs=[output],
outputs=download_csv,
show_progress="full",
)
export_anki_button.click(
fn=export_deck,
inputs=[output, subject],
outputs=download_anki,
show_progress="full",
)
if __name__ == "__main__":
logger.info("Starting AnkiGen application")
ankigen.launch(share=False, favicon_path="./favicon.ico")