Spaces:
Runtime error
Runtime error
File size: 16,985 Bytes
29a229f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import torch
import pytorch_lightning as pl
from typing import Any, Dict, Mapping, Tuple
from yacs.config import CfgNode
from ..utils import SkeletonRenderer, MeshRenderer
from ..utils.geometry import aa_to_rotmat, perspective_projection
from .backbones import create_backbone
from .heads import build_smpl_head
from .discriminator import Discriminator
from .losses import Keypoint3DLoss, Keypoint2DLoss, ParameterLoss
from . import SMPL
class HMR2(pl.LightningModule):
def __init__(self, cfg: CfgNode, init_renderer: bool = True):
"""
Setup HMR2 model
Args:
cfg (CfgNode): Config file as a yacs CfgNode
"""
super().__init__()
# Save hyperparameters
self.save_hyperparameters(logger=False, ignore=['init_renderer'])
self.cfg = cfg
# Create backbone feature extractor
self.backbone = create_backbone(cfg)
# Create SMPL head
self.smpl_head = build_smpl_head(cfg)
# Create discriminator
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
self.discriminator = Discriminator()
# Define loss functions
self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1')
self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1')
self.smpl_parameter_loss = ParameterLoss()
# Instantiate SMPL model
smpl_cfg = {k.lower(): v for k,v in dict(cfg.SMPL).items()}
self.smpl = SMPL(**smpl_cfg)
# Buffer that shows whetheer we need to initialize ActNorm layers
self.register_buffer('initialized', torch.tensor(False))
# Setup renderer for visualization
if init_renderer:
self.renderer = SkeletonRenderer(self.cfg)
self.mesh_renderer = MeshRenderer(self.cfg, faces=self.smpl.faces)
else:
self.renderer = None
self.mesh_renderer = None
# Disable automatic optimization since we use adversarial training
self.automatic_optimization = False
def get_parameters(self):
all_params = list(self.smpl_head.parameters())
all_params += list(self.backbone.parameters())
return all_params
def configure_optimizers(self) -> Tuple[torch.optim.Optimizer, torch.optim.Optimizer]:
"""
Setup model and distriminator Optimizers
Returns:
Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: Model and discriminator optimizers
"""
param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}]
optimizer = torch.optim.AdamW(params=param_groups,
# lr=self.cfg.TRAIN.LR,
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
optimizer_disc = torch.optim.AdamW(params=self.discriminator.parameters(),
lr=self.cfg.TRAIN.LR,
weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
return optimizer, optimizer_disc
def forward_step(self, batch: Dict, train: bool = False) -> Dict:
"""
Run a forward step of the network
Args:
batch (Dict): Dictionary containing batch data
train (bool): Flag indicating whether it is training or validation mode
Returns:
Dict: Dictionary containing the regression output
"""
# Use RGB image as input
x = batch['img']
batch_size = x.shape[0]
# Compute conditioning features using the backbone
# if using ViT backbone, we need to use a different aspect ratio
conditioning_feats = self.backbone(x[:,:,:,32:-32])
pred_smpl_params, pred_cam, _ = self.smpl_head(conditioning_feats)
# Store useful regression outputs to the output dict
output = {}
output['pred_cam'] = pred_cam
output['pred_smpl_params'] = {k: v.clone() for k,v in pred_smpl_params.items()}
# Compute camera translation
device = pred_smpl_params['body_pose'].device
dtype = pred_smpl_params['body_pose'].dtype
focal_length = self.cfg.EXTRA.FOCAL_LENGTH * torch.ones(batch_size, 2, device=device, dtype=dtype)
pred_cam_t = torch.stack([pred_cam[:, 1],
pred_cam[:, 2],
2*focal_length[:, 0]/(self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] +1e-9)],dim=-1)
output['pred_cam_t'] = pred_cam_t
output['focal_length'] = focal_length
# Compute model vertices, joints and the projected joints
pred_smpl_params['global_orient'] = pred_smpl_params['global_orient'].reshape(batch_size, -1, 3, 3)
pred_smpl_params['body_pose'] = pred_smpl_params['body_pose'].reshape(batch_size, -1, 3, 3)
pred_smpl_params['betas'] = pred_smpl_params['betas'].reshape(batch_size, -1)
smpl_output = self.smpl(**{k: v.float() for k,v in pred_smpl_params.items()}, pose2rot=False)
pred_keypoints_3d = smpl_output.joints
pred_vertices = smpl_output.vertices
output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3)
output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3)
pred_cam_t = pred_cam_t.reshape(-1, 3)
focal_length = focal_length.reshape(-1, 2)
pred_keypoints_2d = perspective_projection(pred_keypoints_3d,
translation=pred_cam_t,
focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE)
output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2)
return output
def compute_loss(self, batch: Dict, output: Dict, train: bool = True) -> torch.Tensor:
"""
Compute losses given the input batch and the regression output
Args:
batch (Dict): Dictionary containing batch data
output (Dict): Dictionary containing the regression output
train (bool): Flag indicating whether it is training or validation mode
Returns:
torch.Tensor : Total loss for current batch
"""
pred_smpl_params = output['pred_smpl_params']
pred_keypoints_2d = output['pred_keypoints_2d']
pred_keypoints_3d = output['pred_keypoints_3d']
batch_size = pred_smpl_params['body_pose'].shape[0]
device = pred_smpl_params['body_pose'].device
dtype = pred_smpl_params['body_pose'].dtype
# Get annotations
gt_keypoints_2d = batch['keypoints_2d']
gt_keypoints_3d = batch['keypoints_3d']
gt_smpl_params = batch['smpl_params']
has_smpl_params = batch['has_smpl_params']
is_axis_angle = batch['smpl_params_is_axis_angle']
# Compute 3D keypoint loss
loss_keypoints_2d = self.keypoint_2d_loss(pred_keypoints_2d, gt_keypoints_2d)
loss_keypoints_3d = self.keypoint_3d_loss(pred_keypoints_3d, gt_keypoints_3d, pelvis_id=25+14)
# Compute loss on SMPL parameters
loss_smpl_params = {}
for k, pred in pred_smpl_params.items():
gt = gt_smpl_params[k].view(batch_size, -1)
if is_axis_angle[k].all():
gt = aa_to_rotmat(gt.reshape(-1, 3)).view(batch_size, -1, 3, 3)
has_gt = has_smpl_params[k]
loss_smpl_params[k] = self.smpl_parameter_loss(pred.reshape(batch_size, -1), gt.reshape(batch_size, -1), has_gt)
# # Filter out images with corresponding SMPL parameter annotations
# smpl_params = {k: v.clone() for k,v in gt_smpl_params.items()}
# smpl_params['body_pose'] = aa_to_rotmat(smpl_params['body_pose'].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)[:, :, :, :2].permute(0, 1, 3, 2).reshape(batch_size, -1)
# smpl_params['global_orient'] = aa_to_rotmat(smpl_params['global_orient'].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)[:, :, :, :2].permute(0, 1, 3, 2).reshape(batch_size, -1)
# smpl_params['betas'] = smpl_params['betas']
# has_smpl_params = (batch['has_smpl_params']['body_pose'] > 0)
# smpl_params = {k: v[has_smpl_params] for k, v in smpl_params.items()}
loss = self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'] * loss_keypoints_3d+\
self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'] * loss_keypoints_2d+\
sum([loss_smpl_params[k] * self.cfg.LOSS_WEIGHTS[k.upper()] for k in loss_smpl_params])
losses = dict(loss=loss.detach(),
loss_keypoints_2d=loss_keypoints_2d.detach(),
loss_keypoints_3d=loss_keypoints_3d.detach())
for k, v in loss_smpl_params.items():
losses['loss_' + k] = v.detach()
output['losses'] = losses
return loss
# Tensoroboard logging should run from first rank only
@pl.utilities.rank_zero.rank_zero_only
def tensorboard_logging(self, batch: Dict, output: Dict, step_count: int, train: bool = True, write_to_summary_writer: bool = True) -> None:
"""
Log results to Tensorboard
Args:
batch (Dict): Dictionary containing batch data
output (Dict): Dictionary containing the regression output
step_count (int): Global training step count
train (bool): Flag indicating whether it is training or validation mode
"""
mode = 'train' if train else 'val'
batch_size = batch['keypoints_2d'].shape[0]
images = batch['img']
images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1,3,1,1)
images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1,3,1,1)
#images = 255*images.permute(0, 2, 3, 1).cpu().numpy()
pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
pred_vertices = output['pred_vertices'].detach().reshape(batch_size, -1, 3)
focal_length = output['focal_length'].detach().reshape(batch_size, 2)
gt_keypoints_3d = batch['keypoints_3d']
gt_keypoints_2d = batch['keypoints_2d']
losses = output['losses']
pred_cam_t = output['pred_cam_t'].detach().reshape(batch_size, 3)
pred_keypoints_2d = output['pred_keypoints_2d'].detach().reshape(batch_size, -1, 2)
if write_to_summary_writer:
summary_writer = self.logger.experiment
for loss_name, val in losses.items():
summary_writer.add_scalar(mode +'/' + loss_name, val.detach().item(), step_count)
num_images = min(batch_size, self.cfg.EXTRA.NUM_LOG_IMAGES)
gt_keypoints_3d = batch['keypoints_3d']
pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
# We render the skeletons instead of the full mesh because rendering a lot of meshes will make the training slow.
#predictions = self.renderer(pred_keypoints_3d[:num_images],
# gt_keypoints_3d[:num_images],
# 2 * gt_keypoints_2d[:num_images],
# images=images[:num_images],
# camera_translation=pred_cam_t[:num_images])
predictions = self.mesh_renderer.visualize_tensorboard(pred_vertices[:num_images].cpu().numpy(),
pred_cam_t[:num_images].cpu().numpy(),
images[:num_images].cpu().numpy(),
pred_keypoints_2d[:num_images].cpu().numpy(),
gt_keypoints_2d[:num_images].cpu().numpy(),
focal_length=focal_length[:num_images].cpu().numpy())
if write_to_summary_writer:
summary_writer.add_image('%s/predictions' % mode, predictions, step_count)
return predictions
def forward(self, batch: Dict) -> Dict:
"""
Run a forward step of the network in val mode
Args:
batch (Dict): Dictionary containing batch data
Returns:
Dict: Dictionary containing the regression output
"""
return self.forward_step(batch, train=False)
def training_step_discriminator(self, batch: Dict,
body_pose: torch.Tensor,
betas: torch.Tensor,
optimizer: torch.optim.Optimizer) -> torch.Tensor:
"""
Run a discriminator training step
Args:
batch (Dict): Dictionary containing mocap batch data
body_pose (torch.Tensor): Regressed body pose from current step
betas (torch.Tensor): Regressed betas from current step
optimizer (torch.optim.Optimizer): Discriminator optimizer
Returns:
torch.Tensor: Discriminator loss
"""
batch_size = body_pose.shape[0]
gt_body_pose = batch['body_pose']
gt_betas = batch['betas']
gt_rotmat = aa_to_rotmat(gt_body_pose.view(-1,3)).view(batch_size, -1, 3, 3)
disc_fake_out = self.discriminator(body_pose.detach(), betas.detach())
loss_fake = ((disc_fake_out - 0.0) ** 2).sum() / batch_size
disc_real_out = self.discriminator(gt_rotmat, gt_betas)
loss_real = ((disc_real_out - 1.0) ** 2).sum() / batch_size
loss_disc = loss_fake + loss_real
loss = self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_disc
optimizer.zero_grad()
self.manual_backward(loss)
optimizer.step()
return loss_disc.detach()
def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict:
"""
Run a full training step
Args:
joint_batch (Dict): Dictionary containing image and mocap batch data
batch_idx (int): Unused.
batch_idx (torch.Tensor): Unused.
Returns:
Dict: Dictionary containing regression output.
"""
batch = joint_batch['img']
mocap_batch = joint_batch['mocap']
optimizer = self.optimizers(use_pl_optimizer=True)
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
optimizer, optimizer_disc = optimizer
# Update learning rates
self.update_learning_rates(batch_idx)
batch_size = batch['img'].shape[0]
output = self.forward_step(batch, train=True)
pred_smpl_params = output['pred_smpl_params']
if self.cfg.get('UPDATE_GT_SPIN', False):
self.update_batch_gt_spin(batch, output)
loss = self.compute_loss(batch, output, train=True)
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
disc_out = self.discriminator(pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1))
loss_adv = ((disc_out - 1.0) ** 2).sum() / batch_size
loss = loss + self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_adv
# Error if Nan
if torch.isnan(loss):
raise ValueError('Loss is NaN')
optimizer.zero_grad()
self.manual_backward(loss)
# Clip gradient
if self.cfg.TRAIN.get('GRAD_CLIP_VAL', 0) > 0:
gn = torch.nn.utils.clip_grad_norm_(self.get_parameters(), self.cfg.TRAIN.GRAD_CLIP_VAL, error_if_nonfinite=True)
self.log('train/grad_norm', gn, on_step=True, on_epoch=True, prog_bar=True, logger=True)
optimizer.step()
if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
loss_disc = self.training_step_discriminator(mocap_batch, pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1), optimizer_disc)
output['losses']['loss_gen'] = loss_adv
output['losses']['loss_disc'] = loss_disc
if self.global_step > 0 and self.global_step % self.cfg.GENERAL.LOG_STEPS == 0:
self.tensorboard_logging(batch, output, self.global_step, train=True)
self.log('train/loss', output['losses']['loss'], on_step=True, on_epoch=True, prog_bar=True, logger=False)
return output
def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx=0) -> Dict:
"""
Run a validation step and log to Tensorboard
Args:
batch (Dict): Dictionary containing batch data
batch_idx (int): Unused.
Returns:
Dict: Dictionary containing regression output.
"""
# batch_size = batch['img'].shape[0]
output = self.forward_step(batch, train=False)
pred_smpl_params = output['pred_smpl_params']
loss = self.compute_loss(batch, output, train=False)
output['loss'] = loss
self.tensorboard_logging(batch, output, self.global_step, train=False)
return output
|