File size: 16,985 Bytes
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import torch
import pytorch_lightning as pl
from typing import Any, Dict, Mapping, Tuple

from yacs.config import CfgNode

from ..utils import SkeletonRenderer, MeshRenderer
from ..utils.geometry import aa_to_rotmat, perspective_projection
from .backbones import create_backbone
from .heads import build_smpl_head
from .discriminator import Discriminator
from .losses import Keypoint3DLoss, Keypoint2DLoss, ParameterLoss
from . import SMPL


class HMR2(pl.LightningModule):

    def __init__(self, cfg: CfgNode, init_renderer: bool = True):
        """
        Setup HMR2 model
        Args:
            cfg (CfgNode): Config file as a yacs CfgNode
        """
        super().__init__()

        # Save hyperparameters
        self.save_hyperparameters(logger=False, ignore=['init_renderer'])

        self.cfg = cfg
        # Create backbone feature extractor
        self.backbone = create_backbone(cfg)
        
        # Create SMPL head
        self.smpl_head = build_smpl_head(cfg)

        # Create discriminator
        if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
            self.discriminator = Discriminator()

        # Define loss functions
        self.keypoint_3d_loss = Keypoint3DLoss(loss_type='l1')
        self.keypoint_2d_loss = Keypoint2DLoss(loss_type='l1')
        self.smpl_parameter_loss = ParameterLoss()

        # Instantiate SMPL model
        smpl_cfg = {k.lower(): v for k,v in dict(cfg.SMPL).items()}
        self.smpl = SMPL(**smpl_cfg)

        # Buffer that shows whetheer we need to initialize ActNorm layers
        self.register_buffer('initialized', torch.tensor(False))
        # Setup renderer for visualization
        if init_renderer:
            self.renderer = SkeletonRenderer(self.cfg)
            self.mesh_renderer = MeshRenderer(self.cfg, faces=self.smpl.faces)
        else:
            self.renderer = None
            self.mesh_renderer = None

        # Disable automatic optimization since we use adversarial training
        self.automatic_optimization = False

    def get_parameters(self):
        all_params = list(self.smpl_head.parameters())
        all_params += list(self.backbone.parameters())
        return all_params

    def configure_optimizers(self) -> Tuple[torch.optim.Optimizer, torch.optim.Optimizer]:
        """
        Setup model and distriminator Optimizers
        Returns:
            Tuple[torch.optim.Optimizer, torch.optim.Optimizer]: Model and discriminator optimizers
        """
        param_groups = [{'params': filter(lambda p: p.requires_grad, self.get_parameters()), 'lr': self.cfg.TRAIN.LR}]

        optimizer = torch.optim.AdamW(params=param_groups,
                                        # lr=self.cfg.TRAIN.LR,
                                        weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)
        optimizer_disc = torch.optim.AdamW(params=self.discriminator.parameters(),
                                            lr=self.cfg.TRAIN.LR,
                                            weight_decay=self.cfg.TRAIN.WEIGHT_DECAY)

        return optimizer, optimizer_disc

    def forward_step(self, batch: Dict, train: bool = False) -> Dict:
        """
        Run a forward step of the network
        Args:
            batch (Dict): Dictionary containing batch data
            train (bool): Flag indicating whether it is training or validation mode
        Returns:
            Dict: Dictionary containing the regression output
        """

        # Use RGB image as input
        x = batch['img']
        batch_size = x.shape[0]

        # Compute conditioning features using the backbone
        # if using ViT backbone, we need to use a different aspect ratio
        conditioning_feats = self.backbone(x[:,:,:,32:-32])

        pred_smpl_params, pred_cam, _ = self.smpl_head(conditioning_feats)

        # Store useful regression outputs to the output dict
        output = {}
        output['pred_cam'] = pred_cam
        output['pred_smpl_params'] = {k: v.clone() for k,v in pred_smpl_params.items()}

        # Compute camera translation
        device = pred_smpl_params['body_pose'].device
        dtype = pred_smpl_params['body_pose'].dtype
        focal_length = self.cfg.EXTRA.FOCAL_LENGTH * torch.ones(batch_size, 2, device=device, dtype=dtype)
        pred_cam_t = torch.stack([pred_cam[:, 1],
                                  pred_cam[:, 2],
                                  2*focal_length[:, 0]/(self.cfg.MODEL.IMAGE_SIZE * pred_cam[:, 0] +1e-9)],dim=-1)
        output['pred_cam_t'] = pred_cam_t
        output['focal_length'] = focal_length

        # Compute model vertices, joints and the projected joints
        pred_smpl_params['global_orient'] = pred_smpl_params['global_orient'].reshape(batch_size, -1, 3, 3)
        pred_smpl_params['body_pose'] = pred_smpl_params['body_pose'].reshape(batch_size, -1, 3, 3)
        pred_smpl_params['betas'] = pred_smpl_params['betas'].reshape(batch_size, -1)
        smpl_output = self.smpl(**{k: v.float() for k,v in pred_smpl_params.items()}, pose2rot=False)
        pred_keypoints_3d = smpl_output.joints
        pred_vertices = smpl_output.vertices
        output['pred_keypoints_3d'] = pred_keypoints_3d.reshape(batch_size, -1, 3)
        output['pred_vertices'] = pred_vertices.reshape(batch_size, -1, 3)
        pred_cam_t = pred_cam_t.reshape(-1, 3)
        focal_length = focal_length.reshape(-1, 2)
        pred_keypoints_2d = perspective_projection(pred_keypoints_3d,
                                                   translation=pred_cam_t,
                                                   focal_length=focal_length / self.cfg.MODEL.IMAGE_SIZE)

        output['pred_keypoints_2d'] = pred_keypoints_2d.reshape(batch_size, -1, 2)
        return output

    def compute_loss(self, batch: Dict, output: Dict, train: bool = True) -> torch.Tensor:
        """
        Compute losses given the input batch and the regression output
        Args:
            batch (Dict): Dictionary containing batch data
            output (Dict): Dictionary containing the regression output
            train (bool): Flag indicating whether it is training or validation mode
        Returns:
            torch.Tensor : Total loss for current batch
        """

        pred_smpl_params = output['pred_smpl_params']
        pred_keypoints_2d = output['pred_keypoints_2d']
        pred_keypoints_3d = output['pred_keypoints_3d']


        batch_size = pred_smpl_params['body_pose'].shape[0]
        device = pred_smpl_params['body_pose'].device
        dtype = pred_smpl_params['body_pose'].dtype

        # Get annotations
        gt_keypoints_2d = batch['keypoints_2d']
        gt_keypoints_3d = batch['keypoints_3d']
        gt_smpl_params = batch['smpl_params']
        has_smpl_params = batch['has_smpl_params']
        is_axis_angle = batch['smpl_params_is_axis_angle']

        # Compute 3D keypoint loss
        loss_keypoints_2d = self.keypoint_2d_loss(pred_keypoints_2d, gt_keypoints_2d)
        loss_keypoints_3d = self.keypoint_3d_loss(pred_keypoints_3d, gt_keypoints_3d, pelvis_id=25+14)

        # Compute loss on SMPL parameters
        loss_smpl_params = {}
        for k, pred in pred_smpl_params.items():
            gt = gt_smpl_params[k].view(batch_size, -1)
            if is_axis_angle[k].all():
                gt = aa_to_rotmat(gt.reshape(-1, 3)).view(batch_size, -1, 3, 3)
            has_gt = has_smpl_params[k]
            loss_smpl_params[k] = self.smpl_parameter_loss(pred.reshape(batch_size, -1), gt.reshape(batch_size, -1), has_gt)

        # # Filter out images with corresponding SMPL parameter annotations
        # smpl_params = {k: v.clone() for k,v in gt_smpl_params.items()}
        # smpl_params['body_pose'] = aa_to_rotmat(smpl_params['body_pose'].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)[:, :, :, :2].permute(0, 1, 3, 2).reshape(batch_size, -1)
        # smpl_params['global_orient'] = aa_to_rotmat(smpl_params['global_orient'].reshape(-1, 3)).reshape(batch_size, -1, 3, 3)[:, :, :, :2].permute(0, 1, 3, 2).reshape(batch_size, -1)
        # smpl_params['betas'] = smpl_params['betas']
        # has_smpl_params = (batch['has_smpl_params']['body_pose'] > 0)
        # smpl_params = {k: v[has_smpl_params] for k, v in smpl_params.items()}

        loss = self.cfg.LOSS_WEIGHTS['KEYPOINTS_3D'] * loss_keypoints_3d+\
               self.cfg.LOSS_WEIGHTS['KEYPOINTS_2D'] * loss_keypoints_2d+\
               sum([loss_smpl_params[k] * self.cfg.LOSS_WEIGHTS[k.upper()] for k in loss_smpl_params])

        losses = dict(loss=loss.detach(),
                      loss_keypoints_2d=loss_keypoints_2d.detach(),
                      loss_keypoints_3d=loss_keypoints_3d.detach())

        for k, v in loss_smpl_params.items():
            losses['loss_' + k] = v.detach()

        output['losses'] = losses

        return loss

    # Tensoroboard logging should run from first rank only
    @pl.utilities.rank_zero.rank_zero_only
    def tensorboard_logging(self, batch: Dict, output: Dict, step_count: int, train: bool = True, write_to_summary_writer: bool = True) -> None:
        """
        Log results to Tensorboard
        Args:
            batch (Dict): Dictionary containing batch data
            output (Dict): Dictionary containing the regression output
            step_count (int): Global training step count
            train (bool): Flag indicating whether it is training or validation mode
        """

        mode = 'train' if train else 'val'
        batch_size = batch['keypoints_2d'].shape[0]
        images = batch['img']
        images = images * torch.tensor([0.229, 0.224, 0.225], device=images.device).reshape(1,3,1,1)
        images = images + torch.tensor([0.485, 0.456, 0.406], device=images.device).reshape(1,3,1,1)
        #images = 255*images.permute(0, 2, 3, 1).cpu().numpy()

        pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)
        pred_vertices = output['pred_vertices'].detach().reshape(batch_size, -1, 3)
        focal_length = output['focal_length'].detach().reshape(batch_size, 2)
        gt_keypoints_3d = batch['keypoints_3d']
        gt_keypoints_2d = batch['keypoints_2d']
        losses = output['losses']
        pred_cam_t = output['pred_cam_t'].detach().reshape(batch_size, 3)
        pred_keypoints_2d = output['pred_keypoints_2d'].detach().reshape(batch_size, -1, 2)

        if write_to_summary_writer:
            summary_writer = self.logger.experiment
            for loss_name, val in losses.items():
                summary_writer.add_scalar(mode +'/' + loss_name, val.detach().item(), step_count)
        num_images = min(batch_size, self.cfg.EXTRA.NUM_LOG_IMAGES)

        gt_keypoints_3d = batch['keypoints_3d']
        pred_keypoints_3d = output['pred_keypoints_3d'].detach().reshape(batch_size, -1, 3)

        # We render the skeletons instead of the full mesh because rendering a lot of meshes will make the training slow.
        #predictions = self.renderer(pred_keypoints_3d[:num_images],
        #                            gt_keypoints_3d[:num_images],
        #                            2 * gt_keypoints_2d[:num_images],
        #                            images=images[:num_images],
        #                            camera_translation=pred_cam_t[:num_images])
        predictions = self.mesh_renderer.visualize_tensorboard(pred_vertices[:num_images].cpu().numpy(),
                                                               pred_cam_t[:num_images].cpu().numpy(),
                                                               images[:num_images].cpu().numpy(),
                                                               pred_keypoints_2d[:num_images].cpu().numpy(),
                                                               gt_keypoints_2d[:num_images].cpu().numpy(),
                                                               focal_length=focal_length[:num_images].cpu().numpy())
        if write_to_summary_writer:
            summary_writer.add_image('%s/predictions' % mode, predictions, step_count)

        return predictions

    def forward(self, batch: Dict) -> Dict:
        """
        Run a forward step of the network in val mode
        Args:
            batch (Dict): Dictionary containing batch data
        Returns:
            Dict: Dictionary containing the regression output
        """
        return self.forward_step(batch, train=False)

    def training_step_discriminator(self, batch: Dict,
                                    body_pose: torch.Tensor,
                                    betas: torch.Tensor,
                                    optimizer: torch.optim.Optimizer) -> torch.Tensor:
        """
        Run a discriminator training step
        Args:
            batch (Dict): Dictionary containing mocap batch data
            body_pose (torch.Tensor): Regressed body pose from current step
            betas (torch.Tensor): Regressed betas from current step
            optimizer (torch.optim.Optimizer): Discriminator optimizer
        Returns:
            torch.Tensor: Discriminator loss
        """
        batch_size = body_pose.shape[0]
        gt_body_pose = batch['body_pose']
        gt_betas = batch['betas']
        gt_rotmat = aa_to_rotmat(gt_body_pose.view(-1,3)).view(batch_size, -1, 3, 3)
        disc_fake_out = self.discriminator(body_pose.detach(), betas.detach())
        loss_fake = ((disc_fake_out - 0.0) ** 2).sum() / batch_size
        disc_real_out = self.discriminator(gt_rotmat, gt_betas)
        loss_real = ((disc_real_out - 1.0) ** 2).sum() / batch_size
        loss_disc = loss_fake + loss_real
        loss = self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_disc
        optimizer.zero_grad()
        self.manual_backward(loss)
        optimizer.step()
        return loss_disc.detach()

    def training_step(self, joint_batch: Dict, batch_idx: int) -> Dict:
        """
        Run a full training step
        Args:
            joint_batch (Dict): Dictionary containing image and mocap batch data
            batch_idx (int): Unused.
            batch_idx (torch.Tensor): Unused.
        Returns:
            Dict: Dictionary containing regression output.
        """
        batch = joint_batch['img']
        mocap_batch = joint_batch['mocap']
        optimizer = self.optimizers(use_pl_optimizer=True)
        if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
            optimizer, optimizer_disc = optimizer

        # Update learning rates
        self.update_learning_rates(batch_idx)

        batch_size = batch['img'].shape[0]
        output = self.forward_step(batch, train=True)
        pred_smpl_params = output['pred_smpl_params']
        if self.cfg.get('UPDATE_GT_SPIN', False):
            self.update_batch_gt_spin(batch, output)
        loss = self.compute_loss(batch, output, train=True)
        if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
            disc_out = self.discriminator(pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1))
            loss_adv = ((disc_out - 1.0) ** 2).sum() / batch_size
            loss = loss + self.cfg.LOSS_WEIGHTS.ADVERSARIAL * loss_adv

        # Error if Nan
        if torch.isnan(loss):
            raise ValueError('Loss is NaN')

        optimizer.zero_grad()
        self.manual_backward(loss)
        # Clip gradient
        if self.cfg.TRAIN.get('GRAD_CLIP_VAL', 0) > 0:
            gn = torch.nn.utils.clip_grad_norm_(self.get_parameters(), self.cfg.TRAIN.GRAD_CLIP_VAL, error_if_nonfinite=True)
            self.log('train/grad_norm', gn, on_step=True, on_epoch=True, prog_bar=True, logger=True)
        optimizer.step()
        if self.cfg.LOSS_WEIGHTS.ADVERSARIAL > 0:
            loss_disc = self.training_step_discriminator(mocap_batch, pred_smpl_params['body_pose'].reshape(batch_size, -1), pred_smpl_params['betas'].reshape(batch_size, -1), optimizer_disc)
            output['losses']['loss_gen'] = loss_adv
            output['losses']['loss_disc'] = loss_disc

        if self.global_step > 0 and self.global_step % self.cfg.GENERAL.LOG_STEPS == 0:
            self.tensorboard_logging(batch, output, self.global_step, train=True)

        self.log('train/loss', output['losses']['loss'], on_step=True, on_epoch=True, prog_bar=True, logger=False)

        return output

    def validation_step(self, batch: Dict, batch_idx: int, dataloader_idx=0) -> Dict:
        """
        Run a validation step and log to Tensorboard
        Args:
            batch (Dict): Dictionary containing batch data
            batch_idx (int): Unused.
        Returns:
            Dict: Dictionary containing regression output.
        """
        # batch_size = batch['img'].shape[0]
        output = self.forward_step(batch, train=False)

        pred_smpl_params = output['pred_smpl_params']
        loss = self.compute_loss(batch, output, train=False)
        output['loss'] = loss
        self.tensorboard_logging(batch, output, self.global_step, train=False)

        return output