File size: 6,823 Bytes
29a229f
c6a8969
 
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
# if 'PYOPENGL_PLATFORM' not in os.environ:
#     os.environ['PYOPENGL_PLATFORM'] = 'egl'
import torch
from torchvision.utils import make_grid
import numpy as np
import pyrender
import trimesh
import cv2
import torch.nn.functional as F

from .render_openpose import render_openpose

def create_raymond_lights():
    import pyrender
    thetas = np.pi * np.array([1.0 / 6.0, 1.0 / 6.0, 1.0 / 6.0])
    phis = np.pi * np.array([0.0, 2.0 / 3.0, 4.0 / 3.0])

    nodes = []

    for phi, theta in zip(phis, thetas):
        xp = np.sin(theta) * np.cos(phi)
        yp = np.sin(theta) * np.sin(phi)
        zp = np.cos(theta)

        z = np.array([xp, yp, zp])
        z = z / np.linalg.norm(z)
        x = np.array([-z[1], z[0], 0.0])
        if np.linalg.norm(x) == 0:
            x = np.array([1.0, 0.0, 0.0])
        x = x / np.linalg.norm(x)
        y = np.cross(z, x)

        matrix = np.eye(4)
        matrix[:3,:3] = np.c_[x,y,z]
        nodes.append(pyrender.Node(
            light=pyrender.DirectionalLight(color=np.ones(3), intensity=1.0),
            matrix=matrix
        ))

    return nodes

class MeshRenderer:

    def __init__(self, cfg, faces=None):
        self.cfg = cfg
        self.focal_length = cfg.EXTRA.FOCAL_LENGTH
        self.img_res = cfg.MODEL.IMAGE_SIZE
        self.renderer = pyrender.OffscreenRenderer(viewport_width=self.img_res,
                                       viewport_height=self.img_res,
                                       point_size=1.0)
        
        self.camera_center = [self.img_res // 2, self.img_res // 2]
        self.faces = faces

    def visualize(self, vertices, camera_translation, images, focal_length=None, nrow=3, padding=2):
        images_np = np.transpose(images, (0,2,3,1))
        rend_imgs = []
        for i in range(vertices.shape[0]):
            fl = self.focal_length
            rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float()
            rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float()
            rend_imgs.append(torch.from_numpy(images[i]))
            rend_imgs.append(rend_img)
            rend_imgs.append(rend_img_side)
        rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding)
        return rend_imgs

    def visualize_tensorboard(self, vertices, camera_translation, images, pred_keypoints, gt_keypoints, focal_length=None, nrow=5, padding=2):
        images_np = np.transpose(images, (0,2,3,1))
        rend_imgs = []
        pred_keypoints = np.concatenate((pred_keypoints, np.ones_like(pred_keypoints)[:, :, [0]]), axis=-1)
        pred_keypoints = self.img_res * (pred_keypoints + 0.5)
        gt_keypoints[:, :, :-1] = self.img_res * (gt_keypoints[:, :, :-1] + 0.5)
        keypoint_matches = [(1, 12), (2, 8), (3, 7), (4, 6), (5, 9), (6, 10), (7, 11), (8, 14), (9, 2), (10, 1), (11, 0), (12, 3), (13, 4), (14, 5)]
        for i in range(vertices.shape[0]):
            fl = self.focal_length
            rend_img = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=False), (2,0,1))).float()
            rend_img_side = torch.from_numpy(np.transpose(self.__call__(vertices[i], camera_translation[i], images_np[i], focal_length=fl, side_view=True), (2,0,1))).float()
            body_keypoints = pred_keypoints[i, :25]
            extra_keypoints = pred_keypoints[i, -19:]
            for pair in keypoint_matches:
                body_keypoints[pair[0], :] = extra_keypoints[pair[1], :]
            pred_keypoints_img = render_openpose(255 * images_np[i].copy(), body_keypoints) / 255
            body_keypoints = gt_keypoints[i, :25]
            extra_keypoints = gt_keypoints[i, -19:]
            for pair in keypoint_matches:
                if extra_keypoints[pair[1], -1] > 0 and body_keypoints[pair[0], -1] == 0:
                    body_keypoints[pair[0], :] = extra_keypoints[pair[1], :]
            gt_keypoints_img = render_openpose(255*images_np[i].copy(), body_keypoints) / 255
            rend_imgs.append(torch.from_numpy(images[i]))
            rend_imgs.append(rend_img)
            rend_imgs.append(rend_img_side)
            rend_imgs.append(torch.from_numpy(pred_keypoints_img).permute(2,0,1))
            rend_imgs.append(torch.from_numpy(gt_keypoints_img).permute(2,0,1))
        rend_imgs = make_grid(rend_imgs, nrow=nrow, padding=padding)
        return rend_imgs

    def __call__(self, vertices, camera_translation, image, focal_length=5000, text=None, resize=None, side_view=False, baseColorFactor=(1.0, 1.0, 0.9, 1.0), rot_angle=90):
        renderer = pyrender.OffscreenRenderer(viewport_width=image.shape[1],
                                              viewport_height=image.shape[0],
                                              point_size=1.0)
        material = pyrender.MetallicRoughnessMaterial(
            metallicFactor=0.0,
            alphaMode='OPAQUE',
            baseColorFactor=baseColorFactor)

        camera_translation[0] *= -1.

        mesh = trimesh.Trimesh(vertices.copy(), self.faces.copy())
        if side_view:
            rot = trimesh.transformations.rotation_matrix(
                np.radians(rot_angle), [0, 1, 0])
            mesh.apply_transform(rot)
        rot = trimesh.transformations.rotation_matrix(
            np.radians(180), [1, 0, 0])
        mesh.apply_transform(rot)
        mesh = pyrender.Mesh.from_trimesh(mesh, material=material)

        scene = pyrender.Scene(bg_color=[0.0, 0.0, 0.0, 0.0],
                               ambient_light=(0.3, 0.3, 0.3))
        scene.add(mesh, 'mesh')

        camera_pose = np.eye(4)
        camera_pose[:3, 3] = camera_translation
        camera_center = [image.shape[1] / 2., image.shape[0] / 2.]
        camera = pyrender.IntrinsicsCamera(fx=focal_length, fy=focal_length,
                                           cx=camera_center[0], cy=camera_center[1])
        scene.add(camera, pose=camera_pose)


        light_nodes = create_raymond_lights()
        for node in light_nodes:
            scene.add_node(node)

        color, rend_depth = renderer.render(scene, flags=pyrender.RenderFlags.RGBA)
        color = color.astype(np.float32) / 255.0
        valid_mask = (color[:, :, -1] > 0)[:, :, np.newaxis]
        if not side_view:
            output_img = (color[:, :, :3] * valid_mask +
                      (1 - valid_mask) * image)
        else:
            output_img = color[:, :, :3]
        if resize is not None:
            output_img = cv2.resize(output_img, resize)

        output_img = output_img.astype(np.float32)
        renderer.delete()
        return output_img