File size: 8,870 Bytes
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
version: 2.1

# -------------------------------------------------------------------------------------
# Environments to run the jobs in
# -------------------------------------------------------------------------------------
cpu: &cpu
  machine:
    image: ubuntu-2004:202107-02
  resource_class: medium

gpu: &gpu
  machine:
    # NOTE: use a cuda version that's supported by all our pytorch versions
    image: ubuntu-1604-cuda-11.1:202012-01
  resource_class: gpu.nvidia.small

windows-cpu: &windows_cpu
  machine:
    resource_class: windows.medium
    image: windows-server-2019-vs2019:stable
    shell: powershell.exe

# windows-gpu: &windows_gpu
#     machine:
#       resource_class: windows.gpu.nvidia.medium
#       image: windows-server-2019-nvidia:stable

version_parameters: &version_parameters
  parameters:
    pytorch_version:
      type: string
    torchvision_version:
      type: string
    pytorch_index:
      type: string
      # use test wheels index to have access to RC wheels
      # https://download.pytorch.org/whl/test/torch_test.html
      default: "https://download.pytorch.org/whl/torch_stable.html"
    python_version:  # NOTE: only affect linux
      type: string
      default: '3.8.6'

  environment:
    PYTORCH_VERSION: << parameters.pytorch_version >>
    TORCHVISION_VERSION: << parameters.torchvision_version >>
    PYTORCH_INDEX: << parameters.pytorch_index >>
    PYTHON_VERSION: << parameters.python_version>>
    # point datasets to ~/.torch so it's cached in CI
    DETECTRON2_DATASETS: ~/.torch/datasets

# -------------------------------------------------------------------------------------
# Re-usable commands
# -------------------------------------------------------------------------------------
# install_nvidia_driver: &install_nvidia_driver
#   - run:
#       name: Install nvidia driver
#       working_directory: ~/
#       command: |
#         wget -q 'https://s3.amazonaws.com/ossci-linux/nvidia_driver/NVIDIA-Linux-x86_64-430.40.run'
#         sudo /bin/bash ./NVIDIA-Linux-x86_64-430.40.run -s --no-drm
#         nvidia-smi

add_ssh_keys: &add_ssh_keys
  # https://circleci.com/docs/2.0/add-ssh-key/
  - add_ssh_keys:
      fingerprints:
        - "e4:13:f2:22:d4:49:e8:e4:57:5a:ac:20:2f:3f:1f:ca"

install_python: &install_python
  - run:
      name: Install Python
      working_directory: ~/
      command: |
        # upgrade pyenv
        cd /opt/circleci/.pyenv/plugins/python-build/../.. && git pull && cd -
        pyenv install -s $PYTHON_VERSION
        pyenv global $PYTHON_VERSION
        python --version
        which python
        pip install --upgrade pip

setup_venv: &setup_venv
  - run:
      name: Setup Virtual Env
      working_directory: ~/
      command: |
        python -m venv ~/venv
        echo ". ~/venv/bin/activate" >> $BASH_ENV
        . ~/venv/bin/activate
        python --version
        which python
        which pip
        pip install --upgrade pip

setup_venv_win: &setup_venv_win
  - run:
      name: Setup Virtual Env for Windows
      command: |
        pip install virtualenv
        python -m virtualenv env
        .\env\Scripts\activate
        python --version
        which python
        which pip

install_linux_dep: &install_linux_dep
  - run:
      name: Install Dependencies
      command: |
        # disable crash coredump, so unittests fail fast
        sudo systemctl stop apport.service
        # install from github to get latest; install iopath first since fvcore depends on it
        pip install --progress-bar off -U 'git+https://github.com/facebookresearch/iopath'
        pip install --progress-bar off -U 'git+https://github.com/facebookresearch/fvcore'
        # Don't use pytest-xdist: cuda tests are unstable under multi-process workers.
        # Don't use opencv 4.7.0.68: https://github.com/opencv/opencv-python/issues/765
        pip install --progress-bar off ninja opencv-python-headless!=4.7.0.68 pytest tensorboard pycocotools onnx
        pip install --progress-bar off torch==$PYTORCH_VERSION -f $PYTORCH_INDEX
        if [[ "$TORCHVISION_VERSION" == "master" ]]; then
          pip install git+https://github.com/pytorch/vision.git
        else
          pip install --progress-bar off torchvision==$TORCHVISION_VERSION -f $PYTORCH_INDEX
        fi

        python -c 'import torch; print("CUDA:", torch.cuda.is_available())'
        gcc --version

install_detectron2: &install_detectron2
  - run:
      name: Install Detectron2
      command: |
        # Remove first, in case it's in the CI cache
        pip uninstall -y detectron2

        pip install --progress-bar off -e .[all]
        python -m detectron2.utils.collect_env
        ./datasets/prepare_for_tests.sh

run_unittests: &run_unittests
  - run:
      name: Run Unit Tests
      command: |
        pytest -sv --durations=15 tests  # parallel causes some random failures

uninstall_tests: &uninstall_tests
  - run:
      name: Run Tests After Uninstalling
      command: |
        pip uninstall -y detectron2
        # Remove built binaries
        rm -rf build/ detectron2/*.so
        # Tests that code is importable without installation
        PYTHONPATH=. ./.circleci/import-tests.sh


# -------------------------------------------------------------------------------------
# Jobs to run
# -------------------------------------------------------------------------------------
jobs:
  linux_cpu_tests:
    <<: *cpu
    <<: *version_parameters

    working_directory: ~/detectron2

    steps:
      - checkout

      # Cache the venv directory that contains python, dependencies, and checkpoints
      # Refresh the key when dependencies should be updated (e.g. when pytorch releases)
      - restore_cache:
          keys:
            - cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827

      - <<: *install_python
      - <<: *install_linux_dep
      - <<: *install_detectron2
      - <<: *run_unittests
      - <<: *uninstall_tests

      - save_cache:
          paths:
            - /opt/circleci/.pyenv
            - ~/.torch
          key: cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827


  linux_gpu_tests:
    <<: *gpu
    <<: *version_parameters

    working_directory: ~/detectron2

    steps:
      - checkout

      - restore_cache:
          keys:
            - cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827

      - <<: *install_python
      - <<: *install_linux_dep
      - <<: *install_detectron2
      - <<: *run_unittests
      - <<: *uninstall_tests

      - save_cache:
          paths:
            - /opt/circleci/.pyenv
            - ~/.torch
          key: cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210827

  windows_cpu_build:
    <<: *windows_cpu
    <<: *version_parameters
    steps:
      - <<: *add_ssh_keys
      - checkout
      - <<: *setup_venv_win

      # Cache the env directory that contains dependencies
      - restore_cache:
          keys:
            - cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210404

      - run:
          name: Install Dependencies
          command: |
            pip install certifi --ignore-installed  # required on windows to workaround some cert issue
            pip install numpy cython  # required on windows before pycocotools
            pip install opencv-python-headless pytest-xdist pycocotools tensorboard onnx
            pip install -U git+https://github.com/facebookresearch/iopath
            pip install -U git+https://github.com/facebookresearch/fvcore
            pip install torch==$env:PYTORCH_VERSION torchvision==$env:TORCHVISION_VERSION -f $env:PYTORCH_INDEX

      - save_cache:
          paths:
            - env
          key: cache-{{ arch }}-<< parameters.pytorch_version >>-{{ .Branch }}-20210404

      - <<: *install_detectron2
      # TODO: unittest fails for now

workflows:
  version: 2
  regular_test:
    jobs:
      - linux_cpu_tests:
          name: linux_cpu_tests_pytorch1.10
          pytorch_version: '1.10.0+cpu'
          torchvision_version: '0.11.1+cpu'
      - linux_gpu_tests:
          name: linux_gpu_tests_pytorch1.8
          pytorch_version: '1.8.1+cu111'
          torchvision_version: '0.9.1+cu111'
      - linux_gpu_tests:
          name: linux_gpu_tests_pytorch1.9
          pytorch_version: '1.9+cu111'
          torchvision_version: '0.10+cu111'
      - linux_gpu_tests:
          name: linux_gpu_tests_pytorch1.10
          pytorch_version: '1.10+cu111'
          torchvision_version: '0.11.1+cu111'
      - linux_gpu_tests:
          name: linux_gpu_tests_pytorch1.10_python39
          pytorch_version: '1.10+cu111'
          torchvision_version: '0.11.1+cu111'
          python_version: '3.9.6'
      - windows_cpu_build:
          pytorch_version: '1.10+cpu'
          torchvision_version: '0.11.1+cpu'