File size: 1,884 Bytes
29a229f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import torch
import numpy as np
import pickle
from typing import Optional
import smplx
from smplx.lbs import vertices2joints
from smplx.utils import SMPLOutput


class SMPL(smplx.SMPLLayer):
    def __init__(self, *args, joint_regressor_extra: Optional[str] = None, update_hips: bool = False, **kwargs):
        """
        Extension of the official SMPL implementation to support more joints.
        Args:
            Same as SMPLLayer.
            joint_regressor_extra (str): Path to extra joint regressor.
        """
        super(SMPL, self).__init__(*args, **kwargs)
        smpl_to_openpose = [24, 12, 17, 19, 21, 16, 18, 20, 0, 2, 5, 8, 1, 4,
                            7, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]
            
        if joint_regressor_extra is not None:
            self.register_buffer('joint_regressor_extra', torch.tensor(pickle.load(open(joint_regressor_extra, 'rb'), encoding='latin1'), dtype=torch.float32))
        self.register_buffer('joint_map', torch.tensor(smpl_to_openpose, dtype=torch.long))
        self.update_hips = update_hips

    def forward(self, *args, **kwargs) -> SMPLOutput:
        """
        Run forward pass. Same as SMPL and also append an extra set of joints if joint_regressor_extra is specified.
        """
        smpl_output = super(SMPL, self).forward(*args, **kwargs)
        joints = smpl_output.joints[:, self.joint_map, :]
        if self.update_hips:
            joints[:,[9,12]] = joints[:,[9,12]] + \
                0.25*(joints[:,[9,12]]-joints[:,[12,9]]) + \
                0.5*(joints[:,[8]] - 0.5*(joints[:,[9,12]] + joints[:,[12,9]]))
        if hasattr(self, 'joint_regressor_extra'):
            extra_joints = vertices2joints(self.joint_regressor_extra, smpl_output.vertices)
            joints = torch.cat([joints, extra_joints], dim=1)
        smpl_output.joints = joints
        return smpl_output