Spaces:
Runtime error
Runtime error
""" | |
Render OpenPose keypoints. | |
Code was ported to Python from the official C++ implementation https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/src/openpose/utilities/keypoint.cpp | |
""" | |
import cv2 | |
import math | |
import numpy as np | |
from typing import List, Tuple | |
def get_keypoints_rectangle(keypoints: np.array, threshold: float) -> Tuple[float, float, float]: | |
""" | |
Compute rectangle enclosing keypoints above the threshold. | |
Args: | |
keypoints (np.array): Keypoint array of shape (N, 3). | |
threshold (float): Confidence visualization threshold. | |
Returns: | |
Tuple[float, float, float]: Rectangle width, height and area. | |
""" | |
valid_ind = keypoints[:, -1] > threshold | |
if valid_ind.sum() > 0: | |
valid_keypoints = keypoints[valid_ind][:, :-1] | |
max_x = valid_keypoints[:,0].max() | |
max_y = valid_keypoints[:,1].max() | |
min_x = valid_keypoints[:,0].min() | |
min_y = valid_keypoints[:,1].min() | |
width = max_x - min_x | |
height = max_y - min_y | |
area = width * height | |
return width, height, area | |
else: | |
return 0,0,0 | |
def render_keypoints(img: np.array, | |
keypoints: np.array, | |
pairs: List, | |
colors: List, | |
thickness_circle_ratio: float, | |
thickness_line_ratio_wrt_circle: float, | |
pose_scales: List, | |
threshold: float = 0.1) -> np.array: | |
""" | |
Render keypoints on input image. | |
Args: | |
img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range. | |
keypoints (np.array): Keypoint array of shape (N, 3). | |
pairs (List): List of keypoint pairs per limb. | |
colors: (List): List of colors per keypoint. | |
thickness_circle_ratio (float): Circle thickness ratio. | |
thickness_line_ratio_wrt_circle (float): Line thickness ratio wrt the circle. | |
pose_scales (List): List of pose scales. | |
threshold (float): Only visualize keypoints with confidence above the threshold. | |
Returns: | |
(np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image. | |
""" | |
img_orig = img.copy() | |
width, height = img.shape[1], img.shape[2] | |
area = width * height | |
lineType = 8 | |
shift = 0 | |
numberColors = len(colors) | |
thresholdRectangle = 0.1 | |
person_width, person_height, person_area = get_keypoints_rectangle(keypoints, thresholdRectangle) | |
if person_area > 0: | |
ratioAreas = min(1, max(person_width / width, person_height / height)) | |
thicknessRatio = np.maximum(np.round(math.sqrt(area) * thickness_circle_ratio * ratioAreas), 2) | |
thicknessCircle = np.maximum(1, thicknessRatio if ratioAreas > 0.05 else -np.ones_like(thicknessRatio)) | |
thicknessLine = np.maximum(1, np.round(thicknessRatio * thickness_line_ratio_wrt_circle)) | |
radius = thicknessRatio / 2 | |
img = np.ascontiguousarray(img.copy()) | |
for i, pair in enumerate(pairs): | |
index1, index2 = pair | |
if keypoints[index1, -1] > threshold and keypoints[index2, -1] > threshold: | |
thicknessLineScaled = int(round(min(thicknessLine[index1], thicknessLine[index2]) * pose_scales[0])) | |
colorIndex = index2 | |
color = colors[colorIndex % numberColors] | |
keypoint1 = keypoints[index1, :-1].astype(np.int) | |
keypoint2 = keypoints[index2, :-1].astype(np.int) | |
cv2.line(img, tuple(keypoint1.tolist()), tuple(keypoint2.tolist()), tuple(color.tolist()), thicknessLineScaled, lineType, shift) | |
for part in range(len(keypoints)): | |
faceIndex = part | |
if keypoints[faceIndex, -1] > threshold: | |
radiusScaled = int(round(radius[faceIndex] * pose_scales[0])) | |
thicknessCircleScaled = int(round(thicknessCircle[faceIndex] * pose_scales[0])) | |
colorIndex = part | |
color = colors[colorIndex % numberColors] | |
center = keypoints[faceIndex, :-1].astype(np.int) | |
cv2.circle(img, tuple(center.tolist()), radiusScaled, tuple(color.tolist()), thicknessCircleScaled, lineType, shift) | |
return img | |
def render_body_keypoints(img: np.array, | |
body_keypoints: np.array) -> np.array: | |
""" | |
Render OpenPose body keypoints on input image. | |
Args: | |
img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range. | |
body_keypoints (np.array): Keypoint array of shape (N, 3); 3 <====> (x, y, confidence). | |
Returns: | |
(np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image. | |
""" | |
thickness_circle_ratio = 1./75. * np.ones(body_keypoints.shape[0]) | |
thickness_line_ratio_wrt_circle = 0.75 | |
pairs = [] | |
pairs = [1,8,1,2,1,5,2,3,3,4,5,6,6,7,8,9,9,10,10,11,8,12,12,13,13,14,1,0,0,15,15,17,0,16,16,18,14,19,19,20,14,21,11,22,22,23,11,24] | |
pairs = np.array(pairs).reshape(-1,2) | |
colors = [255., 0., 85., | |
255., 0., 0., | |
255., 85., 0., | |
255., 170., 0., | |
255., 255., 0., | |
170., 255., 0., | |
85., 255., 0., | |
0., 255., 0., | |
255., 0., 0., | |
0., 255., 85., | |
0., 255., 170., | |
0., 255., 255., | |
0., 170., 255., | |
0., 85., 255., | |
0., 0., 255., | |
255., 0., 170., | |
170., 0., 255., | |
255., 0., 255., | |
85., 0., 255., | |
0., 0., 255., | |
0., 0., 255., | |
0., 0., 255., | |
0., 255., 255., | |
0., 255., 255., | |
0., 255., 255.] | |
colors = np.array(colors).reshape(-1,3) | |
pose_scales = [1] | |
return render_keypoints(img, body_keypoints, pairs, colors, thickness_circle_ratio, thickness_line_ratio_wrt_circle, pose_scales, 0.1) | |
def render_openpose(img: np.array, | |
body_keypoints: np.array) -> np.array: | |
""" | |
Render keypoints in the OpenPose format on input image. | |
Args: | |
img (np.array): Input image of shape (H, W, 3) with pixel values in the [0,255] range. | |
body_keypoints (np.array): Keypoint array of shape (N, 3); 3 <====> (x, y, confidence). | |
Returns: | |
(np.array): Image of shape (H, W, 3) with keypoints drawn on top of the original image. | |
""" | |
img = render_body_keypoints(img, body_keypoints) | |
return img | |