Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
class Discriminator(nn.Module): | |
def __init__(self): | |
""" | |
Pose + Shape discriminator proposed in HMR | |
""" | |
super(Discriminator, self).__init__() | |
self.num_joints = 23 | |
# poses_alone | |
self.D_conv1 = nn.Conv2d(9, 32, kernel_size=1) | |
nn.init.xavier_uniform_(self.D_conv1.weight) | |
nn.init.zeros_(self.D_conv1.bias) | |
self.relu = nn.ReLU(inplace=True) | |
self.D_conv2 = nn.Conv2d(32, 32, kernel_size=1) | |
nn.init.xavier_uniform_(self.D_conv2.weight) | |
nn.init.zeros_(self.D_conv2.bias) | |
pose_out = [] | |
for i in range(self.num_joints): | |
pose_out_temp = nn.Linear(32, 1) | |
nn.init.xavier_uniform_(pose_out_temp.weight) | |
nn.init.zeros_(pose_out_temp.bias) | |
pose_out.append(pose_out_temp) | |
self.pose_out = nn.ModuleList(pose_out) | |
# betas | |
self.betas_fc1 = nn.Linear(10, 10) | |
nn.init.xavier_uniform_(self.betas_fc1.weight) | |
nn.init.zeros_(self.betas_fc1.bias) | |
self.betas_fc2 = nn.Linear(10, 5) | |
nn.init.xavier_uniform_(self.betas_fc2.weight) | |
nn.init.zeros_(self.betas_fc2.bias) | |
self.betas_out = nn.Linear(5, 1) | |
nn.init.xavier_uniform_(self.betas_out.weight) | |
nn.init.zeros_(self.betas_out.bias) | |
# poses_joint | |
self.D_alljoints_fc1 = nn.Linear(32*self.num_joints, 1024) | |
nn.init.xavier_uniform_(self.D_alljoints_fc1.weight) | |
nn.init.zeros_(self.D_alljoints_fc1.bias) | |
self.D_alljoints_fc2 = nn.Linear(1024, 1024) | |
nn.init.xavier_uniform_(self.D_alljoints_fc2.weight) | |
nn.init.zeros_(self.D_alljoints_fc2.bias) | |
self.D_alljoints_out = nn.Linear(1024, 1) | |
nn.init.xavier_uniform_(self.D_alljoints_out.weight) | |
nn.init.zeros_(self.D_alljoints_out.bias) | |
def forward(self, poses: torch.Tensor, betas: torch.Tensor) -> torch.Tensor: | |
""" | |
Forward pass of the discriminator. | |
Args: | |
poses (torch.Tensor): Tensor of shape (B, 23, 3, 3) containing a batch of SMPL body poses (excluding the global orientation). | |
betas (torch.Tensor): Tensor of shape (B, 10) containign a batch of SMPL beta coefficients. | |
Returns: | |
torch.Tensor: Discriminator output with shape (B, 25) | |
""" | |
#import ipdb; ipdb.set_trace() | |
#bn = poses.shape[0] | |
# poses B x 207 | |
#poses = poses.reshape(bn, -1) | |
# poses B x num_joints x 1 x 9 | |
poses = poses.reshape(-1, self.num_joints, 1, 9) | |
bn = poses.shape[0] | |
# poses B x 9 x num_joints x 1 | |
poses = poses.permute(0, 3, 1, 2).contiguous() | |
# poses_alone | |
poses = self.D_conv1(poses) | |
poses = self.relu(poses) | |
poses = self.D_conv2(poses) | |
poses = self.relu(poses) | |
poses_out = [] | |
for i in range(self.num_joints): | |
poses_out_ = self.pose_out[i](poses[:, :, i, 0]) | |
poses_out.append(poses_out_) | |
poses_out = torch.cat(poses_out, dim=1) | |
# betas | |
betas = self.betas_fc1(betas) | |
betas = self.relu(betas) | |
betas = self.betas_fc2(betas) | |
betas = self.relu(betas) | |
betas_out = self.betas_out(betas) | |
# poses_joint | |
poses = poses.reshape(bn,-1) | |
poses_all = self.D_alljoints_fc1(poses) | |
poses_all = self.relu(poses_all) | |
poses_all = self.D_alljoints_fc2(poses_all) | |
poses_all = self.relu(poses_all) | |
poses_all_out = self.D_alljoints_out(poses_all) | |
disc_out = torch.cat((poses_out, betas_out, poses_all_out), 1) | |
return disc_out | |