Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import einops | |
from ...utils.geometry import rot6d_to_rotmat, aa_to_rotmat | |
from ..components.pose_transformer import TransformerDecoder | |
def build_smpl_head(cfg): | |
smpl_head_type = cfg.MODEL.SMPL_HEAD.get('TYPE', 'hmr') | |
if smpl_head_type == 'transformer_decoder': | |
return SMPLTransformerDecoderHead(cfg) | |
else: | |
raise ValueError('Unknown SMPL head type: {}'.format(smpl_head_type)) | |
class SMPLTransformerDecoderHead(nn.Module): | |
""" Cross-attention based SMPL Transformer decoder | |
""" | |
def __init__(self, cfg): | |
super().__init__() | |
self.cfg = cfg | |
self.joint_rep_type = cfg.MODEL.SMPL_HEAD.get('JOINT_REP', '6d') | |
self.joint_rep_dim = {'6d': 6, 'aa': 3}[self.joint_rep_type] | |
npose = self.joint_rep_dim * (cfg.SMPL.NUM_BODY_JOINTS + 1) | |
self.npose = npose | |
self.input_is_mean_shape = cfg.MODEL.SMPL_HEAD.get('TRANSFORMER_INPUT', 'zero') == 'mean_shape' | |
transformer_args = dict( | |
num_tokens=1, | |
token_dim=(npose + 10 + 3) if self.input_is_mean_shape else 1, | |
dim=1024, | |
) | |
transformer_args = (transformer_args | dict(cfg.MODEL.SMPL_HEAD.TRANSFORMER_DECODER)) | |
self.transformer = TransformerDecoder( | |
**transformer_args | |
) | |
dim=transformer_args['dim'] | |
self.decpose = nn.Linear(dim, npose) | |
self.decshape = nn.Linear(dim, 10) | |
self.deccam = nn.Linear(dim, 3) | |
if cfg.MODEL.SMPL_HEAD.get('INIT_DECODER_XAVIER', False): | |
# True by default in MLP. False by default in Transformer | |
nn.init.xavier_uniform_(self.decpose.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.decshape.weight, gain=0.01) | |
nn.init.xavier_uniform_(self.deccam.weight, gain=0.01) | |
mean_params = np.load(cfg.SMPL.MEAN_PARAMS) | |
init_body_pose = torch.from_numpy(mean_params['pose'].astype(np.float32)).unsqueeze(0) | |
init_betas = torch.from_numpy(mean_params['shape'].astype('float32')).unsqueeze(0) | |
init_cam = torch.from_numpy(mean_params['cam'].astype(np.float32)).unsqueeze(0) | |
self.register_buffer('init_body_pose', init_body_pose) | |
self.register_buffer('init_betas', init_betas) | |
self.register_buffer('init_cam', init_cam) | |
def forward(self, x, **kwargs): | |
batch_size = x.shape[0] | |
# vit pretrained backbone is channel-first. Change to token-first | |
x = einops.rearrange(x, 'b c h w -> b (h w) c') | |
init_body_pose = self.init_body_pose.expand(batch_size, -1) | |
init_betas = self.init_betas.expand(batch_size, -1) | |
init_cam = self.init_cam.expand(batch_size, -1) | |
# TODO: Convert init_body_pose to aa rep if needed | |
if self.joint_rep_type == 'aa': | |
raise NotImplementedError | |
pred_body_pose = init_body_pose | |
pred_betas = init_betas | |
pred_cam = init_cam | |
pred_body_pose_list = [] | |
pred_betas_list = [] | |
pred_cam_list = [] | |
for i in range(self.cfg.MODEL.SMPL_HEAD.get('IEF_ITERS', 1)): | |
# Input token to transformer is zero token | |
if self.input_is_mean_shape: | |
token = torch.cat([pred_body_pose, pred_betas, pred_cam], dim=1)[:,None,:] | |
else: | |
token = torch.zeros(batch_size, 1, 1).to(x.device) | |
# Pass through transformer | |
token_out = self.transformer(token, context=x) | |
token_out = token_out.squeeze(1) # (B, C) | |
# Readout from token_out | |
pred_body_pose = self.decpose(token_out) + pred_body_pose | |
pred_betas = self.decshape(token_out) + pred_betas | |
pred_cam = self.deccam(token_out) + pred_cam | |
pred_body_pose_list.append(pred_body_pose) | |
pred_betas_list.append(pred_betas) | |
pred_cam_list.append(pred_cam) | |
# Convert self.joint_rep_type -> rotmat | |
joint_conversion_fn = { | |
'6d': rot6d_to_rotmat, | |
'aa': lambda x: aa_to_rotmat(x.view(-1, 3).contiguous()) | |
}[self.joint_rep_type] | |
pred_smpl_params_list = {} | |
pred_smpl_params_list['body_pose'] = torch.cat([joint_conversion_fn(pbp).view(batch_size, -1, 3, 3)[:, 1:, :, :] for pbp in pred_body_pose_list], dim=0) | |
pred_smpl_params_list['betas'] = torch.cat(pred_betas_list, dim=0) | |
pred_smpl_params_list['cam'] = torch.cat(pred_cam_list, dim=0) | |
pred_body_pose = joint_conversion_fn(pred_body_pose).view(batch_size, self.cfg.SMPL.NUM_BODY_JOINTS+1, 3, 3) | |
pred_smpl_params = {'global_orient': pred_body_pose[:, [0]], | |
'body_pose': pred_body_pose[:, 1:], | |
'betas': pred_betas} | |
return pred_smpl_params, pred_cam, pred_smpl_params_list | |