Spaces:
Running
Running
File size: 2,758 Bytes
60d2583 5c38fee daa80cf 5c38fee 6a5cc80 5ef932e 5c38fee 12178fd 5c38fee c26729e 9e5685a 5c38fee 5ef932e e5984fd 5c38fee 5ef932e 838b33c 6a5cc80 838b33c 82fd045 84df241 6a5cc80 7e7435e 6a5cc80 5c38fee 2d67e97 e5984fd 6a5cc80 2d67e97 5c38fee a086fab 5c38fee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
#TODO: Pydantic, image embedding, clean up data set
import gradio as gr
import logging, os, sys, threading
from custom_utils import (
connect_to_database,
inference,
rag_ingestion,
rag_retrieval_naive,
rag_retrieval_advanced,
rag_inference
)
lock = threading.Lock()
RAG_INGESTION = False
RAG_OFF = "Off"
RAG_NAIVE = "Naive RAG"
RAG_ADVANCED = "Advanced RAG"
logging.basicConfig(stream = sys.stdout, level = logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler(stream = sys.stdout))
def invoke(openai_api_key,
prompt,
accomodates,
bedrooms,
rag_option):
if not openai_api_key:
raise gr.Error("OpenAI API Key is required.")
if not prompt:
raise gr.Error("Prompt is required.")
if not rag_option:
raise gr.Error("Retrieval-Augmented Generation is required.")
with lock:
db, collection = connect_to_database()
inference_result = ""
if (RAG_INGESTION):
return rag_ingestion(collection)
elif rag_option == RAG_OFF:
inference_result = inference(
openai_api_key,
prompt)
elif rag_option == RAG_NAIVE:
retrieval_result = rag_retrieval_naive(
openai_api_key,
prompt,
db,
collection)
inference_result = rag_inference(
openai_api_key,
prompt,
retrieval_result)
elif rag_option == RAG_ADVANCED:
retrieval_result = rag_retrieval_advanced(
openai_api_key,
prompt,
accomodates,
bedrooms,
db,
collection)
inference_result = rag_inference(
openai_api_key,
prompt,
retrieval_result)
print("###")
print(inference_result)
print("###")
return inference_result
gr.close_all()
demo = gr.Interface(
fn = invoke,
inputs = [gr.Textbox(label = "OpenAI API Key", type = "password", lines = 1),
gr.Textbox(label = "Prompt", value = os.environ["PROMPT"], lines = 1),
gr.Number(label = "Accomodates", value = 2),
gr.Number(label = "Bedrooms", value = 1),
gr.Radio([RAG_OFF, RAG_NAIVE, RAG_ADVANCED], label = "Retrieval-Augmented Generation", value = RAG_ADVANCED)],
outputs = [gr.Markdown(label = "Completion", value = os.environ["COMPLETION"], line_breaks = True, sanitize_html = False)],
title = "Context-Aware Reasoning Application",
description = os.environ["DESCRIPTION"]
)
demo.launch() |