Spaces:
Sleeping
Sleeping
File size: 13,307 Bytes
03287bc b0fc967 03287bc e087e63 03287bc 7cbb17a 03287bc e087e63 03287bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
#Import necessary libraries.
import re, nltk, pandas as pd, numpy as np, ssl, streamlit as st
from nltk.corpus import wordnet
import spacy
nlp = spacy.load("en_core_web_lg")
#Import necessary parts for predicting things.
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True)
#If an error is thrown that the corpus "omw-1.4" isn't discoverable you can use this code. (https://stackoverflow.com/questions/38916452/nltk-download-ssl-certificate-verify-failed)
'''try:
_create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
pass
else:
ssl._create_default_https_context = _create_unverified_https_context
nltk.download('omw-1.4')'''
# A simple function to pull synonyms and antonyms using spacy's POS
def syn_ant(word,POS=False,human=True):
pos_options = ['NOUN','VERB','ADJ','ADV']
synonyms = []
antonyms = []
#WordNet hates spaces so you have to remove them
if " " in word:
word = word.replace(" ", "_")
if POS in pos_options:
for syn in wordnet.synsets(word, pos=getattr(wordnet, POS)):
for l in syn.lemmas():
current = l.name()
if human:
current = re.sub("_"," ",current)
synonyms.append(current)
if l.antonyms():
for ant in l.antonyms():
cur_ant = ant.name()
if human:
cur_ant = re.sub("_"," ",cur_ant)
antonyms.append(cur_ant)
else:
for syn in wordnet.synsets(word):
for l in syn.lemmas():
current = l.name()
if human:
current = re.sub("_"," ",current)
synonyms.append(current)
if l.antonyms():
for ant in l.antonyms():
cur_ant = ant.name()
if human:
cur_ant = re.sub("_"," ",cur_ant)
antonyms.append(cur_ant)
synonyms = list(set(synonyms))
antonyms = list(set(antonyms))
return synonyms, antonyms
def process_text(text):
doc = nlp(text.lower())
result = []
for token in doc:
if (token.is_stop) or (token.is_punct) or (token.lemma_ == '-PRON-'):
continue
result.append(token.lemma_)
return " ".join(result)
def clean_definition(syn):
#This function removes stop words from sentences to improve on document level similarity for differentiation.
if type(syn) is str:
synset = wordnet.synset(syn).definition()
elif type(syn) is nltk.corpus.reader.wordnet.Synset:
synset = syn.definition()
definition = nlp(process_text(synset))
return definition
def check_sim(a,b):
if type(a) is str and type(b) is str:
a = nlp(a)
b = nlp(b)
similarity = a.similarity(b)
return similarity
# Builds a dataframe dynamically from WordNet using NLTK.
def wordnet_df(word,POS=False,seed_definition=None):
pos_options = ['NOUN','VERB','ADJ','ADV']
synonyms, antonyms = syn_ant(word,POS,False)
#print(synonyms, antonyms) #for QA purposes
words = []
cats = []
#WordNet hates spaces so you have to remove them
m_word = word.replace(" ", "_")
#Allow the user to pick a seed definition if it is not provided directly to the function. Currently not working so it's commented out.
'''#commented out the way it was designed to allow for me to do it through Streamlit (keeping it for posterity, and for anyone who wants to use it without streamlit.)
for d in range(len(seed_definitions)):
print(f"{d}: {seed_definitions[d]}")
#choice = int(input("Which of the definitions above most aligns to your selection?"))
seed_definition = seed_definitions[choice]'''
try:
definition = seed_definition
except:
st.write("You did not supply a definition.")
if POS in pos_options:
for syn in wordnet.synsets(m_word, pos=getattr(wordnet, POS)):
if check_sim(process_text(seed_definition),process_text(syn.definition())) > .7:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
if len(synonyms) > 0:
for w in synonyms:
w = w.replace(" ","_")
for syn in wordnet.synsets(w, pos=getattr(wordnet, POS)):
if check_sim(process_text(seed_definition),process_text(syn.definition())) > .6:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
if len(antonyms) > 0:
for a in antonyms:
a = a.replace(" ","_")
for syn in wordnet.synsets(a, pos=getattr(wordnet, POS)):
if check_sim(process_text(seed_definition),process_text(syn.definition())) > .26:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
else:
for syn in wordnet.synsets(m_word):
if check_sim(process_text(seed_definition),process_text(syn.definition())) > .7:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
if len(synonyms) > 0:
for w in synonyms:
w = w.replace(" ","_")
for syn in wordnet.synsets(w):
if check_sim(process_text(seed_definition),process_text(syn.definition())) > .6:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
if len(antonyms) > 0:
for a in antonyms:
a = a.replace(" ","_")
for syn in wordnet.synsets(a):
if check_sim(process_text(seed_definition),process_text(syn.definition())) > .26:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
df = {"Categories":cats, "Words":words}
df = pd.DataFrame(df)
df = df.drop_duplicates().reset_index()
df = df.drop("index", axis=1)
return df
def eval_pred_test(text, return_all = False):
'''A basic function for evaluating the prediction from the model and turning it into a visualization friendly number.'''
preds = pipe(text)
neg_score = -1 * preds[0][0]['score']
sent_neg = preds[0][0]['label']
pos_score = preds[0][1]['score']
sent_pos = preds[0][1]['label']
prediction = 0
sentiment = ''
if pos_score > abs(neg_score):
prediction = pos_score
sentiment = sent_pos
elif abs(neg_score) > pos_score:
prediction = neg_score
sentiment = sent_neg
if return_all:
return prediction, sentiment
else:
return prediction
def get_parallel(word, seed_definition, QA=False):
cleaned = nlp(process_text(seed_definition))
root_syns = wordnet.synsets(word)
hypers = []
new_hypos = []
for syn in root_syns:
hypers.extend(syn.hypernyms())
for syn in hypers:
new_hypos.extend(syn.hyponyms())
hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.75]))[:25]
# with st.sidebar:
# st.write(f"The number of hypos is {len(hypos)} during get Parallel at Similarity >= .75.") #QA
if len(hypos) <= 1:
hypos = root_syns
elif len(hypos) < 3:
hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.5]))[:25] # added a cap to each
elif len(hypos) < 10:
hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.66]))[:25]
elif len(hypos) >= 10:
hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.8]))[:25]
if QA:
print(hypers)
print(hypos)
return hypers, hypos
else:
return hypos
# Builds a dataframe dynamically from WordNet using NLTK.
def wordnet_parallel_df(word,seed_definition=None):
words = []
cats = []
#WordNet hates spaces so you have to remove them
m_word = word.replace(" ", "_")
# add synonyms and antonyms for diversity
synonyms, antonyms = syn_ant(word)
words.extend(synonyms)
cats.extend(["synonyms" for n in range(len(synonyms))])
words.extend(antonyms)
cats.extend(["antonyms" for n in range(len(antonyms))])
try:
hypos = get_parallel(m_word,seed_definition)
except:
st.write("You did not supply a definition.")
#Allow the user to pick a seed definition if it is not provided directly to the function.
'''if seed_definition is None:
if POS in pos_options:
seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word, pos=getattr(wordnet, POS))]
else:
seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word)]
for d in range(len(seed_definitions)):
print(f"{d}: {seed_definitions[d]}")
choice = int(input("Which of the definitions above most aligns to your selection?"))
seed_definition = seed_definitions[choice]'''
#This is a QA section
# with st.sidebar:
# st.write(f"The number of hypos is {len(hypos)} during parallel df creation.") #QA
#Transforms hypos into lemmas
for syn in hypos:
cur_lemmas = syn.lemmas()
hypos = syn.hyponyms()
for hypo in hypos:
cur_lemmas.extend(hypo.lemmas())
for lemma in cur_lemmas:
ll = lemma.name()
cats.append(re.sub("_"," ", syn.name().split(".")[0]))
words.append(re.sub("_"," ",ll))
# with st.sidebar:
# st.write(f'There are {len(words)} words in the dataframe at the beginning of df creation.') #QA
df = {"Categories":cats, "Words":words}
df = pd.DataFrame(df)
df = df.drop_duplicates("Words").reset_index()
df = df.drop("index", axis=1)
return df
#@st.experimental_singleton(suppress_st_warning=True)
def cf_from_wordnet_df(seed,text,seed_definition=False):
seed_token = nlp(seed)
seed_POS = seed_token[0].pos_
#print(seed_POS) QA
try:
df = wordnet_parallel_df(seed,seed_definition)
except:
st.write("You did not supply a definition.")
df["text"] = df.Words.apply(lambda x: re.sub(r'\b'+seed+r'\b',x,text))
df["similarity"] = df.Words.apply(lambda x: seed_token[0].similarity(nlp(x)[0]))
df = df[df["similarity"] > 0].reset_index()
df.drop("index", axis=1, inplace=True)
df["pred"] = df.text.apply(eval_pred_test)
# added this because I think it will make the end results better if we ensure the seed is in the data we generate counterfactuals from.
df['seed'] = df.Words.apply(lambda x: 'seed' if x.lower() == seed.lower() else 'alternative')
return df |