File size: 13,307 Bytes
03287bc
 
 
 
b0fc967
03287bc
 
 
 
 
 
 
 
 
e087e63
 
03287bc
 
 
 
 
 
7cbb17a
03287bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e087e63
03287bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#Import necessary libraries.
import re, nltk, pandas as pd, numpy as np, ssl, streamlit as st
from nltk.corpus import wordnet
import spacy
nlp = spacy.load("en_core_web_lg")

#Import necessary parts for predicting things.
from transformers import AutoTokenizer, AutoModelForSequenceClassification, TextClassificationPipeline
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
model = AutoModelForSequenceClassification.from_pretrained("distilbert-base-uncased-finetuned-sst-2-english")
pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer, return_all_scores=True) 

#If an error is thrown that the corpus "omw-1.4" isn't discoverable you can use this code. (https://stackoverflow.com/questions/38916452/nltk-download-ssl-certificate-verify-failed)
'''try:
    _create_unverified_https_context = ssl._create_unverified_context
except AttributeError:
    pass
else:
    ssl._create_default_https_context = _create_unverified_https_context
    
nltk.download('omw-1.4')'''

# A simple function to pull synonyms and antonyms using spacy's POS
def syn_ant(word,POS=False,human=True):
    pos_options = ['NOUN','VERB','ADJ','ADV']
    synonyms = [] 
    antonyms = []
    #WordNet hates spaces so you have to remove them
    if " " in word:
        word = word.replace(" ", "_")
    
    if POS in pos_options:
        for syn in wordnet.synsets(word, pos=getattr(wordnet, POS)): 
            for l in syn.lemmas(): 
                current = l.name()
                if human:
                    current = re.sub("_"," ",current)
                synonyms.append(current) 
                if l.antonyms():
                    for ant in l.antonyms():
                        cur_ant = ant.name()
                        if human:
                            cur_ant = re.sub("_"," ",cur_ant)
                        antonyms.append(cur_ant)
    else: 
        for syn in wordnet.synsets(word): 
            for l in syn.lemmas(): 
                current = l.name()
                if human:
                    current = re.sub("_"," ",current)
                synonyms.append(current) 
                if l.antonyms():
                    for ant in l.antonyms():
                        cur_ant = ant.name()
                        if human:
                            cur_ant = re.sub("_"," ",cur_ant)
                        antonyms.append(cur_ant)
    synonyms = list(set(synonyms))
    antonyms = list(set(antonyms))
    return synonyms, antonyms

def process_text(text):
    doc = nlp(text.lower())
    result = []
    for token in doc:
        if (token.is_stop) or (token.is_punct) or (token.lemma_ == '-PRON-'):
            continue
        result.append(token.lemma_)
    return " ".join(result)

def clean_definition(syn):
    #This function removes stop words from sentences to improve on document level similarity for differentiation.
    if type(syn) is str:
        synset = wordnet.synset(syn).definition()
    elif type(syn) is nltk.corpus.reader.wordnet.Synset:
        synset = syn.definition()
    definition = nlp(process_text(synset))
    return definition

def check_sim(a,b):
    if type(a) is str and type(b) is str:
        a = nlp(a)
        b = nlp(b)
    similarity = a.similarity(b)
    return similarity

# Builds a dataframe dynamically from WordNet using NLTK.
def wordnet_df(word,POS=False,seed_definition=None):
    pos_options = ['NOUN','VERB','ADJ','ADV']
    synonyms, antonyms = syn_ant(word,POS,False)
    #print(synonyms, antonyms) #for QA purposes
    words = []
    cats = []
    #WordNet hates spaces so you have to remove them
    m_word = word.replace(" ", "_")
    
    #Allow the user to pick a seed definition if it is not provided directly to the function. Currently not working so it's commented out.
    '''#commented out the way it was designed to allow for me to do it through Streamlit (keeping it for posterity, and for anyone who wants to use it without streamlit.)
        for d in range(len(seed_definitions)):
            print(f"{d}: {seed_definitions[d]}")
        #choice = int(input("Which of the definitions above most aligns to your selection?"))
        seed_definition = seed_definitions[choice]'''
    try:
        definition = seed_definition
    except: 
        st.write("You did not supply a definition.")

    if POS in pos_options:
        for syn in wordnet.synsets(m_word, pos=getattr(wordnet, POS)):
                if check_sim(process_text(seed_definition),process_text(syn.definition())) > .7:
                    cur_lemmas = syn.lemmas()
                    hypos = syn.hyponyms()
                    for hypo in hypos:
                        cur_lemmas.extend(hypo.lemmas())
                    for lemma in cur_lemmas:
                        ll = lemma.name()
                        cats.append(re.sub("_"," ", syn.name().split(".")[0]))
                        words.append(re.sub("_"," ",ll))

        if len(synonyms) > 0:
            for w in synonyms:
                w = w.replace(" ","_")
                for syn in wordnet.synsets(w, pos=getattr(wordnet, POS)):
                    if check_sim(process_text(seed_definition),process_text(syn.definition())) > .6:
                        cur_lemmas = syn.lemmas()
                        hypos = syn.hyponyms()
                        for hypo in hypos:
                            cur_lemmas.extend(hypo.lemmas())
                        for lemma in cur_lemmas:
                            ll = lemma.name()
                            cats.append(re.sub("_"," ", syn.name().split(".")[0]))
                            words.append(re.sub("_"," ",ll))
        if len(antonyms) > 0:
            for a in antonyms:
                a = a.replace(" ","_")
                for syn in wordnet.synsets(a, pos=getattr(wordnet, POS)):
                    if check_sim(process_text(seed_definition),process_text(syn.definition())) > .26:
                        cur_lemmas = syn.lemmas()
                        hypos = syn.hyponyms()
                        for hypo in hypos:
                            cur_lemmas.extend(hypo.lemmas())
                        for lemma in cur_lemmas:
                            ll = lemma.name()
                            cats.append(re.sub("_"," ", syn.name().split(".")[0]))
                            words.append(re.sub("_"," ",ll))
    else:
        for syn in wordnet.synsets(m_word):
            if check_sim(process_text(seed_definition),process_text(syn.definition())) > .7:
                cur_lemmas = syn.lemmas()
                hypos = syn.hyponyms()
                for hypo in hypos:
                    cur_lemmas.extend(hypo.lemmas())
                for lemma in cur_lemmas:
                    ll = lemma.name()
                    cats.append(re.sub("_"," ", syn.name().split(".")[0]))
                    words.append(re.sub("_"," ",ll))        
        if len(synonyms) > 0:
            for w in synonyms:
                w = w.replace(" ","_")
                for syn in wordnet.synsets(w):
                    if check_sim(process_text(seed_definition),process_text(syn.definition())) > .6:
                        cur_lemmas = syn.lemmas()
                        hypos = syn.hyponyms()
                        for hypo in hypos:
                            cur_lemmas.extend(hypo.lemmas())
                        for lemma in cur_lemmas:
                            ll = lemma.name()
                            cats.append(re.sub("_"," ", syn.name().split(".")[0]))
                            words.append(re.sub("_"," ",ll))
        if len(antonyms) > 0:
            for a in antonyms:
                a = a.replace(" ","_")
                for syn in wordnet.synsets(a):
                    if check_sim(process_text(seed_definition),process_text(syn.definition())) > .26:
                        cur_lemmas = syn.lemmas()
                        hypos = syn.hyponyms()
                        for hypo in hypos:
                            cur_lemmas.extend(hypo.lemmas())
                        for lemma in cur_lemmas:
                            ll = lemma.name()
                            cats.append(re.sub("_"," ", syn.name().split(".")[0]))
                            words.append(re.sub("_"," ",ll))

    df = {"Categories":cats, "Words":words}
    df = pd.DataFrame(df) 
    df = df.drop_duplicates().reset_index()
    df = df.drop("index", axis=1)
    return df

def eval_pred_test(text, return_all = False):
    '''A basic function for evaluating the prediction from the model and turning it into a visualization friendly number.'''
    preds = pipe(text)
    neg_score = -1 * preds[0][0]['score']
    sent_neg = preds[0][0]['label']
    pos_score = preds[0][1]['score']
    sent_pos = preds[0][1]['label']
    prediction = 0
    sentiment = ''
    if pos_score > abs(neg_score):
        prediction = pos_score
        sentiment = sent_pos
    elif abs(neg_score) > pos_score:
        prediction = neg_score
        sentiment = sent_neg
        
    if return_all:
        return prediction, sentiment
    else:
        return prediction
    
def get_parallel(word, seed_definition, QA=False):
    cleaned = nlp(process_text(seed_definition))
    root_syns = wordnet.synsets(word)
    hypers = []
    new_hypos = []
    
    for syn in root_syns:
        hypers.extend(syn.hypernyms())
    
    for syn in hypers:
        new_hypos.extend(syn.hyponyms())
    
    hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.75]))[:25]
#    with st.sidebar:
#        st.write(f"The number of hypos is {len(hypos)} during get Parallel at Similarity >= .75.") #QA
    
    if len(hypos) <= 1:
        hypos = root_syns
    elif len(hypos) < 3:
        hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.5]))[:25] # added a cap to each 
    elif len(hypos) < 10:
        hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.66]))[:25]
    elif len(hypos) >= 10: 
        hypos = list(set([syn for syn in new_hypos if cleaned.similarity(nlp(process_text(syn.definition()))) >=.8]))[:25]
    
    if QA:
        print(hypers)
        print(hypos)
        return hypers, hypos
    else:
        return hypos

# Builds a dataframe dynamically from WordNet using NLTK.
def wordnet_parallel_df(word,seed_definition=None):
    words = []
    cats = []
    #WordNet hates spaces so you have to remove them
    m_word = word.replace(" ", "_")
    
    # add synonyms and antonyms for diversity
    synonyms, antonyms = syn_ant(word)
    words.extend(synonyms)
    cats.extend(["synonyms" for n in range(len(synonyms))])
    words.extend(antonyms)
    cats.extend(["antonyms" for n in range(len(antonyms))])
    
    try:
        hypos = get_parallel(m_word,seed_definition)
    except: 
        st.write("You did not supply a definition.")
    #Allow the user to pick a seed definition if it is not provided directly to the function.
    '''if seed_definition is None:
        if POS in pos_options:
            seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word, pos=getattr(wordnet, POS))]
        else:
            seed_definitions = [syn.definition() for syn in wordnet.synsets(m_word)]
        for d in range(len(seed_definitions)):
            print(f"{d}: {seed_definitions[d]}")
        choice = int(input("Which of the definitions above most aligns to your selection?"))
        seed_definition = seed_definitions[choice]'''

    #This is a QA section
#    with st.sidebar:
#        st.write(f"The number of hypos is {len(hypos)} during parallel df creation.") #QA
    
    #Transforms hypos into lemmas
    for syn in hypos:
        cur_lemmas = syn.lemmas()
        hypos = syn.hyponyms()
        for hypo in hypos:
            cur_lemmas.extend(hypo.lemmas())
        for lemma in cur_lemmas:
            ll = lemma.name()
            cats.append(re.sub("_"," ", syn.name().split(".")[0]))
            words.append(re.sub("_"," ",ll))
#    with st.sidebar:
#        st.write(f'There are {len(words)} words  in the dataframe at the beginning of df creation.') #QA

    df = {"Categories":cats, "Words":words}
    df = pd.DataFrame(df) 
    df = df.drop_duplicates("Words").reset_index()
    df = df.drop("index", axis=1)
    return df

#@st.experimental_singleton(suppress_st_warning=True)
def cf_from_wordnet_df(seed,text,seed_definition=False):
    seed_token = nlp(seed)
    seed_POS = seed_token[0].pos_
    #print(seed_POS) QA
    try:
        df = wordnet_parallel_df(seed,seed_definition)
    except: 
        st.write("You did not supply a definition.")

    df["text"] = df.Words.apply(lambda x: re.sub(r'\b'+seed+r'\b',x,text))
    df["similarity"] = df.Words.apply(lambda x: seed_token[0].similarity(nlp(x)[0]))
    df = df[df["similarity"] > 0].reset_index()
    df.drop("index", axis=1, inplace=True)
    df["pred"] = df.text.apply(eval_pred_test)
    # added this because I think it will make the end results better if we ensure the seed is in the data we generate counterfactuals from.
    df['seed'] = df.Words.apply(lambda x: 'seed' if x.lower() == seed.lower() else 'alternative')
    return df