OpenData-Bordeaux-RSE / empreinte_export.py
Ilyas KHIAT
emission export fin fin
fb9bb4a
raw
history blame
6.46 kB
import streamlit as st
import pandas as pd
import altair as alt
import base64
import pdfkit
import io
from comparateur import *
def load_svg_as_base64(svg_file_path):
with open(svg_file_path, "rb") as svg_file:
return base64.b64encode(svg_file.read()).decode()
def save_pdf(html_content):
pdf = pdfkit.from_string(html_content, False)
return pdf
def display_comparaison_html(value_init, ratio_equivalent, icon, unit):
link_url = f"https://impactco2.fr/outils/comparateur?value={value_init}&comparisons=tgv,eauenbouteille,voiturethermique"
html = f"""
<div style='text-align: center;'>
<a href='{link_url}' target='_blank'><img src='{icon}' alt='{unit}' width='50'></a>
</div>
<div style='text-align: center;'>
<b>{compare(value_init, ratio_equivalent):.2f}</b> {unit}
</div>
"""
return html
def display_cf_comparison():
svg_file_path = "feuille.svg"
svg_base64 = load_svg_as_base64(svg_file_path)
html_content = f"""
<div style='display: flex; align-items: center;'>
<h4 style='margin: 0;'>Votre consommation Carbone</h4>
<img src='data:image/svg+xml;base64,{svg_base64}' alt='svg' width='15' height='15' style='margin-left: 10px;'>
</div>
<br>
"""
serveur_emission = st.session_state['emission'].stop()
emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()])
total_emission = serveur_emission + emission_api
pourcentage_api = emission_api / total_emission
pourcentage_serveur = serveur_emission / total_emission
html_content += f"<div style='text-align: center; margin-bottom: 10px;'><b>{total_emission*1000:.3f}</b> g eq. CO2</div>"
html_content += f"<p>Dont :</p>"
html_content += f"<p>- Empreinte serveur (via CodeCarbon) : <b>{serveur_emission*1000:.3f}</b> g eq. CO2 ({pourcentage_serveur:.2%})</p>"
html_content += f"<p>- Empreinte IA (via EcoLogits) : <b>{emission_api*1000:.3f}</b> g eq. CO2 ({pourcentage_api:.2%})</p>"
html_content += "<h4>Votre équivalence</h4>"
html_content += """
<div style='display: flex; justify-content: space-around;'>
"""
html_content += f"""
<div>
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["eau en litre"][0]*1000, dict_comparaison_1kgCO2["eau en litre"][1], "ml")}
</div>
<div>
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["tgv en km"][0], dict_comparaison_1kgCO2["tgv en km"][1], "km")}
</div>
<div>
{display_comparaison_html(total_emission, dict_comparaison_1kgCO2["voiture en km"][0]*1000, dict_comparaison_1kgCO2["voiture en km"][1], "m")}
</div>
"""
html_content += "</div><br>"
html_content += f"""
<br>
<div style='display: flex; align-items: center;'>
<p>Powered by <b>ADEME</b></p>
<a href='https://www.ademe.fr' target='_blank'><img src='https://www.ademe.fr/wp-content/uploads/2022/11/ademe-logo-2022-1.svg' alt='svg' width='30' height='30' style='margin-left: 10px;'></a>
</div>
<br>
"""
#st.markdown(html_content, unsafe_allow_html=True)
return html_content
def color_scale(val):
if val == '-':
return 'background-color: white'
elif val <= 1:
return 'background-color: rgba(0,100,0,0.5)' # dark green with opacity
elif val <= 10:
return 'background-color: rgba(0,128,0,0.5)' # green with opacity
elif val <= 50:
return 'background-color: rgba(255,255,0,0.5)' # yellow with opacity
elif val <= 100:
return 'background-color: rgba(255,165,0,0.5)' # orange with opacity
else:
return 'background-color: rgba(255,0,0,0.5)' # red with opacity
def get_carbon_footprint_html():
html_content = "<h2>EMPREINTE ÉNERGÉTIQUE DE L'APPLICATION IA CARTO RSE</h2>"
html_content += display_cf_comparison()
table = get_table_empreintes_detailed()
table.replace({0.00: '-'}, inplace=True)
styled_df = table[['Consommation Totale']].rename(columns={'Consommation Totale': 'Consommation totale (g eqCo2)'})
styled_df = styled_df.style.applymap(color_scale, subset=['Consommation totale (g eqCo2)'])
html_content += """
<style>
.centered-table {
margin-left: auto;
margin-right: auto;
border-collapse: collapse;
width: 80%;
}
.centered-table th, .centered-table td {
border: 1px solid #ddd;
padding: 8px;
text-align: left;
}
.centered-table th {
background-color: #f2f2f2;
}
</style>
"""
html_content += """
<h2>DÉTAIL PAR TÂCHE</h2>
<div style="overflow-x:auto;">
"""
html_content += styled_df.set_table_attributes('class="centered-table"').to_html()
html_content += """
</div>
"""
serveur_emission = st.session_state['emission'].stop()
emission_api = sum([value["el"] for value in st.session_state["partial_emissions"].values()])
total_emission = serveur_emission + emission_api
pourcentage_api = emission_api / total_emission
pourcentage_serveur = serveur_emission / total_emission
df = pd.DataFrame({"Catégorie": ["Identification + dessin", "IA (extraction pp + dialogue)"], "valeur": [pourcentage_serveur, pourcentage_api]})
color_scale_alt = alt.Scale(domain=['Identification + dessin', 'IA (extraction pp + dialogue)'], range=['#011166', '#63abdf'])
base = alt.Chart(df).encode(
theta=alt.Theta(field="valeur", type="quantitative", stack=True),
color=alt.Color(field="Catégorie", type="nominal",scale=color_scale_alt)
)
pie = base.mark_arc(outerRadius=100)
text = base.mark_text(radius=150, fill="black",align='center', baseline='middle',fontSize=14).encode(alt.Text(field="valeur", type="quantitative", format=".2%"))
chart = alt.layer(pie, text, data=df).resolve_scale(theta="independent")
html_content += """
<h2>SYNTHESE (Dialogue IA et non IA)</h2>
"""
chart.save("chart.png")
with open("chart.png", "rb") as image_file:
encoded_image = base64.b64encode(image_file.read()).decode()
html_content += f'<div style="text-align:center;"><img src="data:image/png;base64,{encoded_image}" alt="Pie chart"></div>'
return html_content