Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import GPT2LMHeadModel, GPT2Tokenizer | |
# Load the GPT-2 model and tokenizer | |
model_name = "gpt2-xl" | |
model = GPT2LMHeadModel.from_pretrained(model_name) | |
tokenizer = GPT2Tokenizer.from_pretrained(model_name) | |
def generate_text(prompt, max_tokens=100, temperature=0.7): | |
input_ids = tokenizer.encode(prompt, return_tensors='pt') | |
# Generate text | |
output = model.generate(input_ids, max_length=max_tokens, temperature=temperature, num_return_sequences=1) | |
generated_text = tokenizer.decode(output[0], skip_special_tokens=True) | |
return generated_text | |
# Create a Gradio interface | |
demo = gr.Interface( | |
fn=generate_text, | |
inputs=[ | |
gr.Textbox(label="Input Prompt"), | |
gr.Slider(minimum=1, maximum=2048, value=100, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
], | |
outputs="text", | |
title="GPT-2 Text Generation", | |
description="Enter a prompt to generate text using the GPT-2 model." | |
) | |
if __name__ == "__main__": | |
demo.launch() |